Advancing personalized medicine in PD using harmonized multi-site clinical data

使用统一的多中心临床数据推进 PD 个性化医疗

基本信息

  • 批准号:
    10618762
  • 负责人:
  • 金额:
    $ 55.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-30 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary Among neurological disorders, the fastest growing is now Parkinson's disease (PD), surpassing Alzheimer's dis- ease. PD manifests as a heterogeneous clinical syndrome and this variability in the clinical phenotype highlights the need to tailor the type and/or the dosage of treatment to the specific and changing needs of individuals living with PD. The main goal of individualized, or precision, medicine is to use patient characteristics to determine an individualized treatment strategy (ITS) to promote wellness. Due to the complex nature of PD coupled with phenotypic heterogeneity, formulating successful individualized approaches to medical care is a complex prob- lem that may benefit from a more data-driven approach. One of the challenges in developing reliable ITSs is that the analyses require studies with fairly large sample sizes and longitudinal assessment of subjects over a relatively long period of time. The data set must also include various prescribing patterns to allow the analytic method to learn the effects of different treatment sequences (strategies). These important requirements preclude investigators from using data from a single clinical study to construct data-driven ITSs. Existing guidelines for symptomatic drug therapy for PD can best be described as "permissive". The relative lack of comparative evidence for different classes of drugs has created challenges in devising recommendations to follow any specific therapeutic strategy. We fill this important gap by proposing a two phase study. The first phase (R61) focuses on creating a harmonized and curated dataset by integrating data from six clinical trials and the PPMI observational study that, in aggregate, involved 4,705 patients followed from 23.5 to 96 months. To the best of our knowledge, such comprehensive data harmonization has not been done before in PD and it can provide an excellent source of information for future studies as well. In the second phase (R33), we will leverage the harmonized data set to develop high quality ITSs for PD with respect to several clinical outcomes including UPDRS score, quality of life, and Schwab and England (SE) ADL measured at 24 and 48 months of follow-up. Specifically, the goals of the R33 phase are to (Aim 1) compare commonly used sequences of drug classes for PD; (Aim 2) identify the best individualized treatment strategies to inform optimal sequences of drug classes for PD. In pursuit of these aims, we will propose robust, rigorous and computationally efficient statistical machine learning methods for constructing data-driven optimal ITSs for PD. The proposal expands the scope of existing methods in developing ITSs by relaxing certain unrealistic assumptions and through the use of flexible modeling techniques (e.g., machine learning methods) while maintaining valid statistical inference. These new methods will be integrated into easy-to-use, publicly available software in the R language (Aim 3). This will maximize the adoption of the proposed methodology by other investigators and allow researchers to analyze other PD datasets with a goal of constructing an ITS for PD. Furthermore, because the methods are not disease-specific, our methods and software will enable similar exploration for other diseases.
项目概要 在神经系统疾病中,目前增长最快的是帕金森病(PD),超过了阿尔茨海默病。 PD 表现为一种异质性临床综合征,这种临床表型的变异性凸显。 需要根据个人生活的具体和不断变化的需求来调整治疗的类型和/或剂量 个体化或精准医学的主要目标是利用患者特征来确定。 由于 PD 的复杂性以及促进健康的个体化治疗策略 (ITS)。 表型异质性,制定成功的个体化医疗护理方法是一个复杂的问题 开发可靠的 ITS 的挑战之一是可能受益于更加数据驱动的方法。 分析需要进行相当大的样本量的研究并对受试者进行纵向评估 数据集还必须包括各种处方模式以进行分析。 了解不同治疗顺序(策略)效果的方法排除了这些重要的要求。 研究人员使用来自单个临床研究的数据来构建数据驱动的 ITS。 现有的 PD 对症药物治疗指南可以用“宽松”来形容。 缺乏不同类别药物的比较证据给制定建议带来了挑战 我们通过提出两阶段研究来填补这一重要空白。 阶段(R61)侧重于通过整合来自六项临床试验的数据来创建统一和精心策划的数据集 PPMI 观察性研究总共涉及 4,705 名患者,随访时间为 23.5 至 96 个月。 据我们所知,这种全面的数据协调在 PD 中以前从未做过,它可以 也为未来的研究提供了极好的信息来源。在第二阶段(R33),我们将利用它。 统一的数据集,用于针对多种临床结果开发高质量的 PD ITS,包括 在 24 个月和 48 个月的随访中测量 UPDRS 评分、生活质量以及 Schwab 和 England (SE) ADL。 具体来说,R33 阶段的目标是(目标 1)比较常用的药物类别序列: PD;(目标 2)确定最佳个体化治疗策略,以告知最佳药物类别序列 为了实现这些目标,我们将提出稳健、严格且计算高效的统计机。 用于构建数据驱动的最优 ITS 的 PD 的学习方法扩展了现有的范围。 通过放宽某些不切实际的假设并使用灵活的建模来开发智能交通系统的方法 技术(例如机器学习方法),同时保持有效的统计推断。 将集成到易于使用的、公开可用的 R 语言软件中(目标 3)。 其他研究人员采用所提出的方法并允许研究人员分析其他 PD 数据集的目标是构建 PD 的 ITS 此外,由于这些方法不是特定于疾病的, 我们的方法和软件将使对其他疾病的类似探索成为可能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashkan Ertefaie其他文献

Ashkan Ertefaie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashkan Ertefaie', 18)}}的其他基金

Advancing personalized medicine in PD using harmonized multi-site clinical data
使用统一的多中心临床数据推进 PD 个性化医疗
  • 批准号:
    10266825
  • 财政年份:
    2020
  • 资助金额:
    $ 55.66万
  • 项目类别:
Analyzing Sequential, Multiple Assignment, Randomized Trials in the Presence of Partial Compliance
在部分符合性的情况下分析序贯、多重分配、随机试验
  • 批准号:
    10017030
  • 财政年份:
    2019
  • 资助金额:
    $ 55.66万
  • 项目类别:
Analyzing Sequential, Multiple Assignment, Randomized Trials in the Presence of Partial Compliance
在部分符合性的情况下分析序贯、多重分配、随机试验
  • 批准号:
    10461789
  • 财政年份:
    2019
  • 资助金额:
    $ 55.66万
  • 项目类别:
Analyzing Sequential, Multiple Assignment, Randomized Trials in the Presence of Partial Compliance
在部分符合性的情况下分析序贯、多重分配、随机试验
  • 批准号:
    10227064
  • 财政年份:
    2019
  • 资助金额:
    $ 55.66万
  • 项目类别:

相似国自然基金

基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
  • 批准号:
    81903703
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
  • 批准号:
    31900984
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
靶向干预CD33/Aβ相互作用改善小胶质细胞功能延缓AD病理进程
  • 批准号:
    81901072
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Innovative Chair to Prevent Pressure Injuries in Persons Living with Alzheimer's Disease and Related Dementias
预防阿尔茨海默病和相关痴呆症患者压力损伤的创新椅子
  • 批准号:
    10760048
  • 财政年份:
    2023
  • 资助金额:
    $ 55.66万
  • 项目类别:
Music4Pain Network: A research network to advance the study of mechanisms underlying the effects of music and music-based interventions on pain.
Music4Pain Network:一个研究网络,旨在推进音乐和基于音乐的疼痛干预措施的影响机制的研究。
  • 批准号:
    10764417
  • 财政年份:
    2023
  • 资助金额:
    $ 55.66万
  • 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
  • 批准号:
    10610975
  • 财政年份:
    2023
  • 资助金额:
    $ 55.66万
  • 项目类别:
Home Alone: Developing a Home-Based Intervention for People with Cognitive Impairment Who Live Alone
独自在家:为独居认知障碍患者制定家庭干预措施
  • 批准号:
    10590347
  • 财政年份:
    2023
  • 资助金额:
    $ 55.66万
  • 项目类别:
Annual wellness visit policy: Impact on disparities in early dementia diagnosis and quality of healthcare for Medicare beneficiaries with Alzheimer's Disease and Its Related Dementias
年度健康就诊政策:对患有阿尔茨海默病及其相关痴呆症的医疗保险受益人的早期痴呆诊断和医疗质量差异的影响
  • 批准号:
    10729272
  • 财政年份:
    2023
  • 资助金额:
    $ 55.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了