The impact of the physical microenvironment on trophoblast function
物理微环境对滋养层功能的影响
基本信息
- 批准号:10611430
- 负责人:
- 金额:$ 2.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAngiogenesis InhibitorsAngiogenic FactorBiological AssayBloodBlood CirculationBlood flowCell CommunicationCell Culture TechniquesCell modelCellsClinicalCollagenCuesDevicesDiseaseE-CadherinEndocrineEndocrine GlandsEndocrine disruptionEndothelial CellsEnsureEnvironmentEthicsExtracellular MatrixFetal DevelopmentFetusFibroblastsFibronectinsFibrosisFunctional disorderGatekeepingGelGlucose TransporterGrowth FactorHealthHeparinHomeostasisHormone secretionHormonesHumanHuman Chorionic GonadotropinHydrogelsHypoxiaIn VitroKnowledgeMaternal-fetal medicineMediatingMediatorMembraneMicrofluidic MicrochipsMicrofluidicsModelingMolecularMonitorMorphologyMothersNutrientOrganOxygenPGF genePathogenicityPhenotypePhysiologicalPhysiologyPlacentaPlacentationPlayPre-EclampsiaPregnancyPregnancy ComplicationsProcessProductionPropertyProteinsRoleSLC2A1 geneSomatotropinSpiral Artery of the EndometriumStainsStimulusStreamSystemTechnical ExpertiseTestingTherapeuticTissuesUpdateUteruscell typedesignfetalhealthy pregnancyin vitro Modelmaternal conditionnovelphysical propertyresponseshear stresstranscription factortrophoblastwasting
项目摘要
The placenta is a critical organ that develops during pregnancy to allow the fetus to obtain nutrients and remove waste. The placenta acts as both a gatekeeper and an endocrine organ; two functions which are vital for a healthy pregnancy. However, how the placenta acts after perturbations of the system is not well known due to ethical concerns regarding obtaining tissue throughout all stages of pregnancy and poor in vitro or ex vivo systems that lack the level of control and physiological relevance needed. In preliminary studies, we have successfully made an in vitro microfluidic placenta model that allows for culture of three different cell types (trophoblast, fibroblasts, and endothelial cells) within natural protein gels. Microfluidic channels incorporate shear stress into the model and the tri-cell culture allows for cell-cell communication which have both been shown to be vital for physiologically relevant trophoblast phenotype. Cells can be cultured on natural substrates derived from human placenta with (1) ease, (2) in parallel, (3) with tight control, and (4) without the need for technical expertise in microfluidics. The model can easily be updated to study many mechanistic and fundamental properties of the healthy or dysregulated placenta. One disease that can cause complications during pregnancy, preeclampsia (PE), is associated with disrupted placentation from limited remodeling of the uterine wall; a process vital to ensure healthy placental tissue, proper oxygen concentration, and appropriate amount of shear stress within the placenta. Due to the lack of uterine remodeling, placental extracellular matrix (ECM) is stiffened via fibrosis, oxygen tension is lowered, and shear stress is increased. We hypothesize that these physical microenvironmental cues within the placenta cause disrupted trophoblast function that can be mechanistically examined in our novel microfluidic placenta model. In Aim 1 we will alter our microfluidic device in order to test how ECM dysregulation alters trophoblast function. We will make stromal layers of healthy or pathogenic stiffnesses from both collagen-I and human placenta derived ECM. Placental derived ECM will enable us to test how the full milieu of the placenta ECM impacts trophoblast function, while the collagen-I ECM will allow for tighter control of the environment. In Aim 2 we will test the closely tied relationship between oxygen tension and shear stress on trophoblast function. Devices will be cultured at healthy or pathogenic oxygen tension and shear stress to elucidate if their stimuli are synergistic. These studies will demonstrate the ease of our system in being able to control the microphysical properties of the system for elucidation of mechanistic properties of multi-cell models of the placenta.
胎盘是一种关键器官,在怀孕期间发育,使胎儿获得营养并清除废物。胎盘既是看门人又是内分泌器官。两个对健康怀孕至关重要的功能。但是,由于对在妊娠的所有阶段获得组织的道德问题以及缺乏所需的控制水平和生理相关水平的体外或离体系统,因此胎盘在系统扰动后的作用尚不广为人知。在初步研究中,我们成功地制造了一种体外微流体胎盘模型,该模型允许在天然蛋白质凝胶中培养三种不同的细胞类型(滋养细胞,成纤维细胞和内皮细胞)。微流体通道将剪切应力纳入模型,而三细胞培养物允许细胞 - 细胞通信,这两者都被证明对生理相关的滋养层表型至关重要。可以将细胞培养在源自(1)易于的人胎盘的天然底物上,(2)并行控制,(3),并且(4)不需要微流体技术技术专长。该模型可以轻松更新以研究健康或失调胎盘的许多机械和基本特性。一种可能引起怀孕期并发症的一种疾病,即先兆子痫(PE),与子宫壁重塑有限重塑的胎盘破坏有关。确保健康胎盘组织,适当的氧气浓度以及胎盘内适当量的剪切应力至关重要的过程。由于缺乏子宫重塑,胎盘外基质(ECM)通过纤维化僵硬,降低了氧气张力,并增加了剪切应力。我们假设胎盘内的这些物理微环境提示会导致滋养细胞的破坏功能,可以在我们的新型微流体胎盘模型中进行机械检查。在AIM 1中,我们将更改微流体设备,以测试ECM失调如何改变滋养细胞的功能。我们将制造胶原蛋白I和人胎盘衍生的ECM的健康或致病刚度的基质层。胎盘派生的ECM将使我们能够测试胎盘ECM的完整环境如何影响滋养细胞功能,而胶原蛋白ECM将允许对环境进行更严格的控制。在AIM 2中,我们将测试氧气张力与剪切应力之间在滋养细胞功能上的紧密关系。设备将在健康或致病的氧气张力和剪切应力下进行培养,以阐明其刺激是否协同作用。这些研究将证明我们系统的易于控制系统的微物理特性,以阐明胎盘多细胞模型的机械性能。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Systematic development of ionizable lipid nanoparticles for placental mRNA delivery using a design of experiments approach.
- DOI:10.1016/j.bioactmat.2023.11.014
- 发表时间:2024-04
- 期刊:
- 影响因子:18.9
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine Nelson其他文献
Katherine Nelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katherine Nelson', 18)}}的其他基金
The impact of the physical microenvironment on trophoblast function
物理微环境对滋养层功能的影响
- 批准号:
10398826 - 财政年份:2021
- 资助金额:
$ 2.96万 - 项目类别:
相似国自然基金
血管生成抑制剂通过肿瘤相关高内皮静脉调控三阴乳腺癌三级淋巴结构成熟的机制研究
- 批准号:82373278
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
免疫检查点抑制剂联合抗血管生成治疗肝癌协同机制的定量磁共振研究
- 批准号:82001786
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于不对称双-β-咔啉骨架的血管生成抑制剂的设计、合成及活性研究
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:地区科学基金项目
抗血管生成抑制乳腺癌生长转移的作用机制及其靶向抑制剂研究
- 批准号:81911530168
- 批准年份:2019
- 资助金额:40 万元
- 项目类别:国际(地区)合作与交流项目
基于肿瘤微环境多模影像评价血管生成抑制剂联合CTLA-4免疫靶向序贯治疗及其机制研究
- 批准号:81971672
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
- 批准号:
10726508 - 财政年份:2023
- 资助金额:
$ 2.96万 - 项目类别:
Intensive postpartum antihypertensive treatment to improve women's cardiovascular health
产后强化抗高血压治疗可改善女性心血管健康
- 批准号:
10664483 - 财政年份:2023
- 资助金额:
$ 2.96万 - 项目类别:
Anti-nucleolin aptamer AS1411: Applications in Kaposi's Sarcoma Associated Herpes Virus (KSHV) biology
抗核仁素适体 AS1411:在卡波西肉瘤相关疱疹病毒 (KSHV) 生物学中的应用
- 批准号:
10619191 - 财政年份:2023
- 资助金额:
$ 2.96万 - 项目类别:
Bile acid receptor signaling in retinopathy of prematurity
早产儿视网膜病变中胆汁酸受体信号传导
- 批准号:
10568100 - 财政年份:2023
- 资助金额:
$ 2.96万 - 项目类别: