Leveraging Big Data and Deep Learning to Develop Next Generation Decision Support Tools to Improve Glycemic Outcomes in Type 1 Diabetes
利用大数据和深度学习开发下一代决策支持工具以改善 1 型糖尿病的血糖结果
基本信息
- 批准号:10611369
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAdultAerobicAerobic ExerciseAffectAlgorithmsAreaArtificial IntelligenceBehaviorBig DataBlood GlucoseCarbohydratesClinicClinical MedicineClinical TrialsCompensationComplexConsensusContinuous Glucose MonitorControl GroupsCutaneousDangerousnessDataData SetDecision Support SystemsDiabetes MellitusDiseaseDoseEatingEventExerciseFrightFunctional disorderFutureGlucoseGoalsGuidelinesHourHumanHybridsHypoglycemiaInjectionsInsulinInsulin Infusion SystemsInsulin-Dependent Diabetes MellitusIntakeJoggingMathematicsMediatingModelingModificationOutcomeParticipantPatientsPerformancePersonsPhysical ExercisePhysical activityPhysiologicalPhysiologyProductionRecommendationRecording of previous eventsResearchResistanceRunningSafetyStructure of beta Cell of isletSupport SystemSurveysSystemTechniquesTimeTracerTrainingUnited StatesVariantWalkingWeight LiftingWorkcomputer frameworkdeep learningdesigndiabeticempowermentexercise regimenexperienceexperimental studyglucose uptakeglycemic controlhuman modelhuman studyimprovedin silicomathematical modelmedical complicationmodel buildingnext generationnovelphysiologic modelpredictive modelingpredictive toolsprimary outcomerecruitresistance exerciseresponsesafety assessmentsecondary outcomesimulationsmartphone applicationstrength trainingsupport toolstoolusability
项目摘要
Project Summary
The hallmark of type 1 diabetes (T1D) is insufficient insulin production caused by pancreatic beta cell
dysfunction. Most people treat their T1D through multiple daily injections (MDI) of insulin or use of a
transcutaneous insulin pump. Several decision support smartphone apps exist to help people estimate insulin
doses based on continuous glucose monitor (CGM) data and food intake. More sophisticated decision support
tools employ mathematical models of human physiology to predict future glucose levels and provide
generalized insulin therapy recommendations. Exercise is a crucial component of the long-term management
of T1D, however many people avoid physical activity for fear of hypoglycemia (< 70 mg/dL). While consensus
guidelines exist to help people manage glucose during physical activity, people still experience acute
complications. Mathematical models of aerobic exercise yield promise in predicting hypoglycemia during
controlled in- clinic experiments but do not perform well in the real-world or during other types of exercise.
There is a critical need for a decision support system that helps people with T1D maintain safe glucose levels
around exercise of varying types. The goal of this proposal is to develop a decision support tool to help people
with T1D who utilize CGM better manage their glucose surrounding exercise. This tool will be called AIDES,
the Artificially Intelligent Diabetic Exercise Support system. We hypothesize that use of a novel exercise-
specific decision support tool, powered by predictive physiological modelling, artificial intelligence (AI), and
deep learning, can provide treatment recommendations to reduce the number of hypoglycemic events
experienced by people with T1D around regular physical exercise. In our first aim, we will develop a new
model of resistance exercise that describes both insulin- and non-insulin mediated effects on glucose
dynamics. We will then create a novel hybrid computational framework that harnesses AI to augment
physiology models of aerobic and resistance exercise. This hybrid framework, called physAI, will harness real-
world, free-living exercise data from the T1Dexi project (Big Data). In our second aim, we will leverage
decades of research into deep learning with the Big Data provided by the T1Dexi project to train an AI-based
decision support system that gives treatment recommendations to help users maintain target glucose during
exercise. In our third aim, we will assess the safety and usability of our decision support engine in a small
proof-of-concept study with human participants, supported by the Sponsor. This will be the first decision
support system specifically designed to provide treatment recommendations that help users maintain safe
glucose levels while performing aerobic and resistance exercise.
项目概要
1 型糖尿病 (T1D) 的特点是胰腺 β 细胞导致胰岛素分泌不足
功能障碍。大多数人通过每天多次注射 (MDI) 胰岛素或使用
经皮胰岛素泵。存在多种决策支持智能手机应用程序来帮助人们估计胰岛素
基于连续血糖监测仪 (CGM) 数据和食物摄入量的剂量。更复杂的决策支持
工具利用人体生理学的数学模型来预测未来的血糖水平并提供
普遍的胰岛素治疗建议。锻炼是长期管理的重要组成部分
T1D 的发病率很高,但许多人因担心低血糖 (< 70 mg/dL) 而避免体力活动。共识的同时
现有指南可以帮助人们在体力活动期间管理血糖,但人们仍然会经历急性
并发症。有氧运动的数学模型有望预测低血糖
受控的临床实验,但在现实世界或其他类型的锻炼中表现不佳。
迫切需要一个决策支持系统来帮助 T1D 患者维持安全的血糖水平
围绕不同类型的锻炼。该提案的目标是开发一种决策支持工具来帮助人们
患有 T1D 的人利用 CGM 可以更好地控制运动周围的血糖。这个工具将被称为AIDES,
人工智能糖尿病运动支持系统。我们假设使用一种新颖的练习-
特定的决策支持工具,由预测生理模型、人工智能 (AI) 和
深度学习,可以提供治疗建议,减少低血糖事件的发生次数
T1D 患者在定期体育锻炼时经历过的情况。在我们的第一个目标中,我们将开发一种新的
描述胰岛素和非胰岛素介导的葡萄糖影响的抗阻运动模型
动力学。然后,我们将创建一个新颖的混合计算框架,利用人工智能来增强
有氧运动和抗阻运动的生理学模型。这种称为 physAI 的混合框架将利用真实的
世界范围内,来自 T1Dexi 项目的自由生活锻炼数据(大数据)。在我们的第二个目标中,我们将利用
T1Dexi 项目提供的大数据对深度学习进行了数十年的研究,以训练基于人工智能的
决策支持系统,提供治疗建议,帮助用户在治疗期间维持目标血糖
锻炼。在我们的第三个目标中,我们将在一个小范围内评估我们的决策支持引擎的安全性和可用性。
在申办者的支持下,对人类参与者进行概念验证研究。这将是第一个决定
支持系统专门设计用于提供治疗建议,帮助用户维护安全
进行有氧运动和抗阻运动时的血糖水平。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gavin Young其他文献
Gavin Young的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gavin Young', 18)}}的其他基金
Leveraging Big Data and Deep Learning to Develop Next Generation Decision Support Tools to Improve Glycemic Outcomes in Type 1 Diabetes
利用大数据和深度学习开发下一代决策支持工具以改善 1 型糖尿病的血糖结果
- 批准号:
10231944 - 财政年份:2021
- 资助金额:
$ 5.27万 - 项目类别:
Leveraging Big Data and Deep Learning to Develop Next Generation Decision Support Tools to Improve Glycemic Outcomes in Type 1 Diabetes
利用大数据和深度学习开发下一代决策支持工具以改善 1 型糖尿病的血糖结果
- 批准号:
10400580 - 财政年份:2021
- 资助金额:
$ 5.27万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Early life bladder inflammatory events in female mice lead to subsequent LUTS in adulthood
雌性小鼠生命早期的膀胱炎症事件导致成年后的 LUTS
- 批准号:
10638866 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Mechanisms of Juvenile Neurogenesis and Post-Stroke Recovery: Determining the Role of Age-Associated Neuroimmune Interactions
青少年神经发生和中风后恢复的机制:确定与年龄相关的神经免疫相互作用的作用
- 批准号:
10637874 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Role of skeletal muscle IPMK in nutrient metabolism and exercise
骨骼肌IPMK在营养代谢和运动中的作用
- 批准号:
10639073 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别: