A nonpharmacological therapeutic intervention of TBI-induced facial allodynia/hyperalgesias in a rodent model
啮齿动物模型中 TBI 引起的面部异常性疼痛/痛觉过敏的非药物治疗干预
基本信息
- 批准号:10611481
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:Absence of pain sensationAccelerationAcupuncture TherapyAcuteAcute PainAdultAnalgesicsAngiographyApoptoticBehaviorBiological MarkersBlast InjuriesBlood - brain barrier anatomyBlood VesselsBlunt TraumaBrainChronicChronic Brain InjuryChronic HeadachesClinical TrialsCompanionsComplicationConflict (Psychology)Craniocerebral TraumaCutaneousDataDependenceDevelopmentDiagnosisDiffuse Axonal InjuryDilatation - actionDiseaseDoseEffectivenessElectric StimulationElectroacupunctureEncephalopathiesEnzymesEvaluationEventExhibitsFaceFunctional Magnetic Resonance ImagingGenderGene ExpressionGenesHeadHeadacheHealthHealthcareHumanHuman ResourcesHyperalgesiaHypersensitivityImmuneImmunohistochemistryInflammationInflammatoryInjuryInterventionMagnetic Resonance ImagingMechanicsMediatingMedicineMilitary PersonnelModalityModelingNF-kappa BNeurobiologyNeuromodulatorNeuronsOrofacial PainOutcomePainPainlessPathway interactionsPatientsPermeabilityPharmaceutical PreparationsPlacebo ControlPlacebosPost-Traumatic HeadachesPreventive treatmentProceduresQuality of lifeRattusReceptor SignalingReperfusion InjuryReportingResearch PersonnelRewardsRisk FactorsRodent ModelSepsisSignal TransductionSignaling MoleculeSpinal CordSportsSprague-Dawley RatsStimulusSurfaceSymptomsSystemTBI treatmentTactileTechniquesTestingTherapeuticTherapeutic InterventionTherapeutic UsesTimeTranslationsTraumatic Brain InjuryTreatment EffectivenessTrigeminal NucleiTrigeminal SystemUp-RegulationVasodilator AgentsVehicle crashVeteransWarWorkaddictionallodyniabehavior testchemokinechronic painclinical translationclinically relevantcytokinedesigndisabilityeffective therapyefficacy testingevidence basehead impacthealinginflammatory markerinjury and repairinnovationinterestmultimodalityneuroinflammationneuronal excitabilityneuronal survivalneuroregulationnoradrenergicnovelorofacialpain reductionpain sensitivitypain signalpre-clinicalpre-clinical researchreceptorresponsesystemic inflammatory responsetargeted treatmenttreatment duration
项目摘要
The lack of understanding of the fundamental neurobiology that underlies the development and persistence
of post-traumatic brain injury (TBI)-induced acute and chronic pain is currently unknown, further limiting our ability
to develop appropriate treatments. Electro-acupuncture (EA) is a healing modality that has been in use for years.
It's modes of action, however, are largely unknown, although there is increasing evidence that brain and spinal
cord are primarily involved in the processing of acupuncture stimuli. The analgesic effects of acupuncture are
well documented. In addition, acupuncture's powerful ability to modulate systemic inflammation during acute and
chronic events has recently been documented in multiple disease conditions. However, there is not enough
preclinical data using the procedure to initiate a clinical trial for TBI. The main objective of this proposal is to test
the dose-dependent effectiveness and mechanism of action of EA treatment to alleviate pain/headache-like
behavior in a clinically relevant rodent model of closed head traumatic brain injury (CH-TBI). This model closely
resembles blunt trauma head injury seen in human injury situations involving head impact from automobile
crashes, sports, and from blast injury received in battlefield situations. This CH-TBI rodent model exhibited
comprehensive evidence of progressive and enduring orofacial and somatic pain/headache-like symptoms
induced by non-painful stimulation. These pain/headache-like symptoms correlated with changes in several
known pain signaling receptors and molecules along the trigeminal and spinothalamic neuronal pain pathways.
Since post-TBI induced chronic pain and headache are major health issue in both military and civilian personnel,
preclinical research aiming at the exploration of underlying neurobiology, and targeted therapy is vital. Therefore,
the objective of two mechanism driven Specific Aims in this proposal is to enhance our understanding of the
neurobiology of EA therapy-influenced changes in TBI-induced pain/headache-like behaviors tested as facial
and somatic hyperalgesia/allodynia. Our recent studies using a mild CH impact acceleration TBI model in adult
Sprague Dawley rats revealed significant and enduring trigeminal and plantar hyperalgesia using a state of the
art operant orofacial and paw pain reward/conflict testing paradigm. Specific Aim 1 will evaluate the therapeutic
potential of EA therapy on the progression of TBI-induced orofacial and paw allodynia/hyperalgesias at acute
(immediate after TBI) and chronic (2 months) time points after TBI using 2 different durations (2-week vs. 4-
week) of EA therapy. Specific Aim 2 will address TBI and therapy-induced changes in mechanisms of pain
signaling in trigeminal and somatic pain pathways; these studies will quantitate of changes in a comprehensive
array of MRI-based biomarkers, molecules, and receptors related to pain signaling and inflammation in the
trigeminal and somatic pain pathways using quantitative MRI, and immunohistochemistry (IHC) based
techniques. The investigators propose that EA treatment will produce a safe, significant reduction of orofacial
and somatic allodynia/hypersensitivities; accordingly, this therapy has the potential for rapid clinical translation
as significant drug free therapy to treat TBI-induced pain and headache. Investigators further propose that the
EA treatment-induced significant reduction in orofacial and somatic pain sensitivity will be accompanied by
significant reduction of inflammatory biomarkers, and pain signaling molecules/receptors in the facial and
somatic pain pathways. MRI and IHC data will further identify details of the mechanisms of action. These studies
have the potential to increase our understanding of the neurobiology of TBI-induced pain/headache and the
mechanisms of benefits from EA, appropriate time of treatment initiation, duration of treatment, and further
provide a platform for the development of TBI-induced pain/headache treatment in both genders. We do
hypothesize that the effectiveness of EA will be maximal if it is administered acutely after injury before significant
maladaptive plasticity in pain pathways happen. Moreover, 4 weeks treatment will produce significantly better
outcomes compared to 2-week treatment due to stimuli-based enduring guided plasticity in the pain pathways.
对发展和持久性背后的基本神经生物学缺乏了解
目前尚不清楚创伤后脑损伤 (TBI) 引起的急性和慢性疼痛的机制,这进一步限制了我们的能力
制定适当的治疗方法。电针(EA)是一种已经使用多年的治疗方式。
然而,尽管有越来越多的证据表明大脑和脊髓
脊髓主要参与针灸刺激的处理。针灸的镇痛作用是
有据可查。此外,针灸在急性和急性期调节全身炎症的强大能力
最近在多种疾病状况中记录了慢性事件。然而,还不够
使用该程序启动 TBI 临床试验的临床前数据。该提案的主要目的是测试
电针治疗缓解疼痛/头痛样症状的剂量依赖性有效性和作用机制
闭合性头部创伤性脑损伤(CH-TBI)的临床相关啮齿动物模型中的行为。这个模型紧密
类似于在涉及汽车头部撞击的人体伤害情况中看到的钝性头部损伤
碰撞、运动以及在战场情况下受到的爆炸伤害。展出的CH-TBI啮齿动物模型
进行性和持久性口面部和躯体疼痛/头痛样症状的综合证据
由无痛刺激引起。这些疼痛/头痛样症状与多种疾病的变化相关
沿着三叉神经和脊髓丘脑神经元疼痛通路的已知疼痛信号受体和分子。
由于 TBI 后引起的慢性疼痛和头痛是军事和文职人员的主要健康问题,
旨在探索神经生物学基础的临床前研究,靶向治疗至关重要。所以,
本提案中两个机制驱动的具体目标的目标是增强我们对
EA 治疗影响 TBI 诱发的疼痛/头痛样行为变化的神经生物学,测试为面部
和躯体痛觉过敏/异常性疼痛。我们最近的研究使用成人轻度 CH 冲击加速 TBI 模型
Sprague Dawley 大鼠使用以下状态显示出显着且持久的三叉神经和足底痛觉过敏:
艺术操作口面部和爪子疼痛奖励/冲突测试范例。具体目标 1 将评估治疗效果
电针治疗对 TBI 诱发的急性口面部和爪子异常疼痛/痛觉过敏进展的潜力
(TBI 后立即)和 TBI 后慢性(2 个月)时间点,使用 2 种不同的持续时间(2 周与 4 周)
周)的 EA 治疗。具体目标 2 将解决 TBI 和治疗引起的疼痛机制变化
三叉神经和躯体疼痛通路中的信号传导;这些研究将量化全面的变化
一系列基于 MRI 的生物标志物、分子和受体,与疼痛信号传导和炎症相关
使用定量 MRI 和基于免疫组织化学 (IHC) 的三叉神经和躯体疼痛通路
技术。研究人员提出,电针治疗将安全、显着地减少口面部畸形。
和躯体异常性疼痛/过敏;因此,该疗法具有快速临床转化的潜力
作为治疗 TBI 引起的疼痛和头痛的重要无药疗法。调查人员进一步建议
电针治疗引起的口面部和躯体疼痛敏感性显着降低将伴随
面部和面部的炎症生物标志物和疼痛信号分子/受体显着减少
躯体疼痛通路。 MRI 和 IHC 数据将进一步确定作用机制的细节。这些研究
有可能增加我们对 TBI 引起的疼痛/头痛的神经生物学和
EA 的获益机制、治疗开始的适当时间、治疗持续时间以及进一步
为开发 TBI 引起的男女疼痛/头痛治疗提供平台。我们做
假设如果在受伤后在严重伤害之前立即进行电针治疗,其效果将达到最大
疼痛通路中会出现适应不良的可塑性。此外,4周的治疗效果会明显好转
由于疼痛通路中基于刺激的持久引导可塑性,与两周治疗相比的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JIAMEI HOU其他文献
JIAMEI HOU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
スマート工場を加速させる新概念の放熱主体エッジAI開発に向けた多値伝送技術
多值传输技术,开发基于散热的新概念边缘人工智能,加速智能工厂
- 批准号:
24K14887 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
未来予測のための見かけの速度場・加速度場の数値安定な高速計算理論の構築とその応用
面向未来预测的视速度场和加速度场数值稳定高速计算理论的构建及其应用
- 批准号:
24K14996 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant