Dopamine modulation of synaptic plasticity and integration in the striatum
多巴胺对纹状体突触可塑性和整合的调节
基本信息
- 批准号:10607794
- 负责人:
- 金额:$ 48.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAxonBasal GangliaBehaviorBehavioralBrainCorpus striatum structureDiseaseDopamineElectric StimulationElectrophysiology (science)FundingFutureGene ExpressionGeneticGenetic RecombinationGlutamatesGoalsImageImmediate-Early GenesImpairmentL-DOPA induced dyskinesiaLabelLearningLesionMediatingMemoryMolecularMolecular ProfilingMotorMotor ActivityMotor CortexMotor SkillsMovementMovement DisordersMusN-Methyl-D-Aspartate ReceptorsNeurodegenerative DisordersNeuronsOutputParkinson DiseasePatternPopulationRoleStructureSynapsesSynaptic plasticityThalamic structureVertebral columncell typeeffective therapyexperimental studyin vivointerdisciplinary approachloss of functionmotor behaviormotor controlmotor learningnerve supplyneural correlatenovel therapeuticspreventpromotersingle-cell RNA sequencingsuccesstooltwo-photon
项目摘要
Project Summary:
Learning and executing motor skills are crucial functions of the brain and involve the coordinated activity of
the motor cortex and basal ganglia. Notably, the connections between the primary motor cortex (M1) and the
dorsolateral striatum (DLS), a major target of M1 output neurons, are crucially involved in motor learning. Loss-
of-function studies, such as DLS lesions or silencing spiny projection neurons (SPNs) impairs learned motor
behaviors, and blocking SPN plasticity by deleting NMDA receptors on SPNs prevents mice from learning new
motor skills. In addition, in movement disorders, such as Parkinson’s disease and L-DOPA-induced dyskinesia,
disruption of ensemble activity of neurons in the DLS or M1 may mediate behavioral deficits. Yet, direct
evidence of plasticity and dynamics of corticostriatal synapses during motor learning is surprisingly lacking.
One reason for this gap is the widespread and convergent innervation of corticostriatal projections which has
made it challenging to assess the function and plasticity of this circuit over the course of motor learning. How
corticostriatal synaptic plasticity contributes to motor learning and the formation of motor memory in vivo
remains unclear. Motor learning leads to adaptation of neuronal activity patterns in M1 as well as in DLS and
their activity becomes more closely associated with learned movements. An intriguing interpretation of these
adaptations in neuronal activity is that such behavior-related neurons may represent the neural correlate of
motor memory, forming a motor memory engram. Here, we hypothesize that motor learning induces synaptic
plasticity in the corticostriatal motor engram neurons, which is crucial for the formation and consolidation of
motor memory. In this proposal, using approaches combining such genetic tools to label and manipulate motor
engram neurons with electrophysiology, ex vivo and in vivo 2-photon imaging, and single-cell RNA-
sequencing, we aim to investigate how corticostriatal circuit adapts during motor learning at molecular, cellular,
and circuit levels. The major goals are: 1: To investigate cortical and striatal excitatory synaptic plasticity of
motor engram neurons. 2: To examine how motor learning affects the structure and function of corticostriatal
projections. 3. To determine the molecular mechanism underlying corticostriatal synaptic plasticity induced by
motor learning. Success in the proposed experiments will provide an in-depth, mechanistic understanding of
synaptic plasticity and integration in the corticostriatal circuits. Given the fundamental role of synaptic plasticity
in the learning and execution of motor skills and maladaptive cortical and striatal synaptic plasticity seen in
movement disorders, our findings may further contribute to future strategies to more effectively treat these
diseases, such as Parkinson’s disease.
项目摘要:
学习和执行运动技能是大脑的关键功能,涉及到核的活动
运动皮层和基底神经节。
损失。
功能研究,例如DLS病变或沉默的棘刺影神经元(SPN)损害了学习的运动
行为,并通过删除SPN上的NMDA受体阻止SPN可塑性可防止小鼠学习新的
运动技能。
DLS神经元的整体活动的破坏可能会导致行为缺陷
令人惊讶的是缺乏在驾驶过程中可塑性和皮质纹状体突触动态的证据。
皮质纹状体Projech的广泛和收敛的原因之一
在运动学习过程中,评估电路的功能和塑料的功能和塑料使其具有挑战性。
皮质纹状体突触可塑性有助于运动学习和体内运动记忆的形成
仍然不清
他们的活动与学习的动作更加紧密相关。
神经元活性的适应是,这种与行为相关的神经元可能会抑制神经相关性
电机记忆,形成电动机记忆engram。
皮质纹状体运动ENGRAM神经元中的塑料,这对于形成和巩固至关重要
在此提案中,使用这种遗传工具来标记和操纵电动机
具有电生理学,离体和体内2光子成像的Engam神经元,以及单细胞RNA-
测序,我们旨在调查在分子,细胞,细胞上驾驶过程中的皮质纹状体电路如何适应。
和电路水平。
运动英语神经元2:检查运动学习如何影响皮质的结构和功能
预测3。
运动经验的成功将提供深入的机械理解
皮质纹状体电路中的突触塑料和整合。
在学习和执行运动技能以及适应不良的皮质和纹状性突触可塑性中
运动障碍,我们的发现可能进一步有助于未来的策略,以更有效地真正的treas虫
疾病,例如帕金森氏病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Ding其他文献
Jun Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Ding', 18)}}的其他基金
Fast Multi-Functional 3D Imaging of Cellular Activities in Deep Tissue
深层组织细胞活动的快速多功能 3D 成像
- 批准号:
10861526 - 财政年份:2023
- 资助金额:
$ 48.85万 - 项目类别:
Connectivity, activity, and function of a hypothalamic pathway in female social behaviors
女性社会行为中下丘脑通路的连接性、活动和功能
- 批准号:
10399638 - 财政年份:2021
- 资助金额:
$ 48.85万 - 项目类别:
Connectivity, activity, and function of a hypothalamic pathway in female social behaviors
女性社会行为中下丘脑通路的连接性、活动和功能
- 批准号:
10570861 - 财政年份:2021
- 资助金额:
$ 48.85万 - 项目类别:
Massively parallel microwire arrays for deep brain stimulation
用于深部脑刺激的大规模并行微线阵列
- 批准号:
9768582 - 财政年份:2018
- 资助金额:
$ 48.85万 - 项目类别:
Dopamine Degradation Pathway and Alpha-synuclein Aggregation
多巴胺降解途径和 α-突触核蛋白聚集
- 批准号:
9770570 - 财政年份:2017
- 资助金额:
$ 48.85万 - 项目类别:
Dopamine Degradation Pathway and Alpha-synuclein Aggregation
多巴胺降解途径和 α-突触核蛋白聚集
- 批准号:
10221065 - 财政年份:2017
- 资助金额:
$ 48.85万 - 项目类别:
Dopamine Degradation Pathway and Alpha-synuclein Aggregation
多巴胺降解途径和 α-突触核蛋白聚集
- 批准号:
10002314 - 财政年份:2017
- 资助金额:
$ 48.85万 - 项目类别:
Alcohol disrupts the balance between dopamine and GABA co-released by midbrain dopamine neurons
酒精破坏中脑多巴胺神经元共同释放的多巴胺和 GABA 之间的平衡
- 批准号:
10172801 - 财政年份:2017
- 资助金额:
$ 48.85万 - 项目类别:
Dopamine modulation of synaptic plasticity and integration in the striatum
多巴胺对纹状体突触可塑性和整合的调节
- 批准号:
10709024 - 财政年份:2015
- 资助金额:
$ 48.85万 - 项目类别:
Functional organization of neural circuits underlying movement control
运动控制背后的神经回路的功能组织
- 批准号:
8501706 - 财政年份:2011
- 资助金额:
$ 48.85万 - 项目类别:
相似国自然基金
帕金森病轴突损伤中组蛋白乳酸化的作用及机制研究
- 批准号:82301604
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
施旺细胞-神经元乳酸代谢稳态通过蛋白质乳酸化调控轴突再生的作用研究
- 批准号:32300648
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于轴突密度纵向分析智力障碍患儿语言功能康复中双流语言网络可塑性机制的MRI-NODDI研究
- 批准号:82360337
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
异丙酚促进STX3/PTEN介导DG-Glu能神经元轴突发生提高发育脑认知功能的机制研究
- 批准号:82301354
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Mical3调控轴突起始段Tau蛋白弥散屏障重塑在慢性创伤性脑病中的作用及机制研究
- 批准号:82371381
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
EFFECTS OF DISEASE AND PALLIDAL DEEP BRAIN STIMULATION ON ANKLE MUSCLE CONTROL IN PARKINSON'S DISEASE
疾病和苍白球深部脑刺激对帕金森病患者踝关节肌肉控制的影响
- 批准号:
10749673 - 财政年份:2023
- 资助金额:
$ 48.85万 - 项目类别:
Tissue Engineered Nigrostriatal Pathway for Anatomical Tract Reconstruction in Parkinson's Disease
组织工程黑质纹状体通路用于帕金森病的解剖束重建
- 批准号:
10737098 - 财政年份:2023
- 资助金额:
$ 48.85万 - 项目类别:
Strengths and weaknesses in learning in mice with ASD risk genes
具有 ASD 风险基因的小鼠在学习方面的优势和劣势
- 批准号:
10753864 - 财政年份:2023
- 资助金额:
$ 48.85万 - 项目类别:
Dissecting Mechanisms of Striatal Acetylcholine Transmission in the Vertebrate Brain
解析脊椎动物大脑中纹状体乙酰胆碱传输的机制
- 批准号:
10534406 - 财政年份:2022
- 资助金额:
$ 48.85万 - 项目类别:
Modulation of Cerebellar Activity by Electrical and Focused Ultrasound Stimulation
通过电刺激和聚焦超声刺激调节小脑活动
- 批准号:
10429656 - 财政年份:2022
- 资助金额:
$ 48.85万 - 项目类别: