Structural dynamics underlying voltage and pH gating of the human proton channel
人体质子通道电压和 pH 门控的结构动力学
基本信息
- 批准号:10610652
- 负责人:
- 金额:$ 6.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary/Abstract
Voltage-gated proton (Hv) channels carry robust proton currents across membranes and are gated by both
voltage and transmembrane pH gradient (∆pH). They normally serve as proton extruders to maintain the pH
homeostasis of metabolically active cells. In phagocytes, human Hv1 (hHv1) channels compensate for charge
and pH imbalance during the respiratory burst of NADPH oxidase to promote the production of reactive oxygen
species (ROS) for pathogen defense. The sperm hHv1 channels trigger intracellular alkylation essential for
capacitation. The hHv1 channel also highly correlates with cancer invasiveness and ischemic neuronal cell
death. Voltage and ∆pH gating are two fundamental biophysical properties determining the dynamics of proton
currents through Hv channels, which in turn underlie their physiological and pathophysiological roles in the
cells mentioned above. Funded by the parent award, we examined the conformational dynamics of the purified
hHv1 proteins in liposomes using single molecule FRET (Fluorescence Resonance Energy Transfer). We have
provided the first glimpse of real-time conformational transitions in the hHv1 voltage sensor and showed that
both voltage and pH gate the hHv1 channel by modifying the conformational landscapes of the voltage sensor.
We also generated a kinetic model to explain how voltage pH interplay determines hHv1 channel gating. To
maximize the impacts of the exciting findings that have been made, we need to obtain accurate rate constants
of conformational transitions described by the kinetic model, which can provide key mechanistic insights into
the voltage sensing and gating in other voltage-gated cation channels. The administrative supplement for the
accessory will upgrade the existing TIRF (Total Internal Reflection Fluorescence) microscope for single
molecule FRET imaging, which will provide the critical technical strength to maximize the scientific impacts of
the parent award. The accessory contains the patch-clamp module for electrophysiological recording and the
single molecule FRET imaging module containing a high-speed sCMOS (scientific Complementary Metal-
Oxide-Semiconductor) camera reaching a time resolution close to 1 millisecond. With the accessory, the
existing TIRF microscope will be upgraded to perform single molecule FRET imaging and electrophysiological
recordings simultaneously. As a result, we will be able to control the voltage and pH applied to hHv1 channels
more precisely to get accurate rate constants of the conformational transitions in the hHv1 channel induced by
pH and voltage. In addition, we will be able to examine the channel gating dynamics by patch-clamp recordings
and conformational dynamics using single molecule FRET imaging simultaneously, thus defining the structure
and function relationship directly.
项目摘要/摘要
电压门控质子(HV)通道横跨膜携带强大的质子电流
电压和跨膜pH梯度(∆PH)。它们通常用作维持pH的质子挤出机
代谢活性细胞的稳态。在吞噬细胞中,人类HV1(HHV1)通道补偿了电荷
在氧化NADPH氧化物的呼吸爆发期间,pH不平衡以促进活性氧的产生
病原体防御的物种(ROS)。精子HHV1通道触发细胞内烷基化必不可少的
电容。 HHV1通道还高度与癌症的侵入性和缺血性神经元细胞相关
死亡。电压和∆PH门控是确定质子动力学的两个基本生物物理特性
通过HV通道的电流,这又是其身体和病理生理作用的基础
上面提到的单元格。由父母奖资助,我们检查了纯化的会议动态
脂质体中的HHV1蛋白使用单分子fret(荧光共振能传递)。我们有
提供了HHV1电压传感器中实时构象过渡的第一概述,并表明这一点
电压和pH门通过修改电压传感器的构象景观,均可通过HHV1通道。
我们还生成了一个动力学模型,以解释电压pH相互作用如何决定HHV1通道门控。到
最大化已经提出的令人兴奋的发现的影响,我们需要获得准确的速率常数
动力学模型所描述的构象转变,该转变可以提供关键的机械见解
其他电压门控阳离子通道中的电压敏感性和门控。的行政补充
附件将升级单个现有的TIRF(总内反射荧光)显微镜
分子FRET成像,它将提供关键的技术强度,以最大程度地提高科学影响
父母奖。配件包含用于电生理记录的贴片钳模块,
单分子FRET成像模块,该模块包含高速SCMO(科学互补金属)
氧化物 - 轴导剂)相机达到接近1毫秒的时间分辨率。使用配件,
现有的TIRF显微镜将升级以执行单分子FRET成像和电生理学
录音简单。结果,我们将能够控制电压并应用于HHV1通道
更精确地获得了由HHV1通道中构象转变的准确速率常数
pH和电压。此外,我们将能够通过贴片钳记录来检查通道门控动力学
并同时使用单分子FRET成像构象动力学,从而定义结构
和功能关系直接。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
SHIZHEN WANG的其他基金
Structural dynamics of voltage-gated ion channels and their implications for ion permeation and drug modulation
电压门控离子通道的结构动力学及其对离子渗透和药物调节的影响
- 批准号:1058328310583283
- 财政年份:2023
- 资助金额:$ 6.27万$ 6.27万
- 项目类别:
相似国自然基金
氟效应促进的氟烷基取代烯烃α-烷基化反应研究
- 批准号:22371262
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
理性设计过渡态择形催化芳烃烷基化反应研究
- 批准号:22378438
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
光诱导铜催化杂环邻位C-H键不对称烷基化反应
- 批准号:22301092
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属/分子筛双功能催化剂的精准调控及其在苯加氢烷基化中的催化研究
- 批准号:22302234
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
导向基促进的铬催化羰基化合物不对称烷基化反应研究
- 批准号:22301171
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Abiological Enzymatic C–H Functionalization for Bioactive Molecule Construction and Diversification
用于生物活性分子构建和多样化的非生物酶 C–H 功能化
- 批准号:1038671010386710
- 财政年份:2020
- 资助金额:$ 6.27万$ 6.27万
- 项目类别:
Late stage C-H functionalization and C-C/N coupling enabled by new strategies for electrochemically-controlled radical formation
电化学控制自由基形成的新策略实现了后期C-H功能化和C-C/N耦合
- 批准号:1038844510388445
- 财政年份:2020
- 资助金额:$ 6.27万$ 6.27万
- 项目类别:
Regulation of DNA Excision Repair in Chromatin
染色质 DNA 切除修复的调控
- 批准号:1022700410227004
- 财政年份:2018
- 资助金额:$ 6.27万$ 6.27万
- 项目类别:
Regulation of DNA Excision Repair in Chromatin
染色质 DNA 切除修复的调控
- 批准号:97513029751302
- 财政年份:2018
- 资助金额:$ 6.27万$ 6.27万
- 项目类别:
Mechanisms of mismatch repair mediated cell death after alkylating agent exposure
烷化剂暴露后错配修复介导的细胞死亡机制
- 批准号:97616159761615
- 财政年份:2018
- 资助金额:$ 6.27万$ 6.27万
- 项目类别: