Mechanisms of Target-Specific Axon Regeneration
靶标特异性轴突再生机制
基本信息
- 批准号:10610120
- 负责人:
- 金额:$ 8.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-15 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesivesAffectAffinityAmericanAxonBackBiologicalBiological AssayBrainCell Adhesion MoleculesCell surfaceCellsChemicalsChemotactic FactorsChimera organismChronicClinicalComplexConnective TissueCoupledCouplingCuesDevelopmentEmbryoEnvironmentExhibitsGeneticGoalsGrowthGrowth ConesHealthHumanIn VitroInjuryLabelMeasuresMethodsModelingMolecularMorphologyMotorMuscle fasciculationMutagenesisNatural regenerationNerveNerve FibersNerve RegenerationNeurogliaNeuronsOutcomePatientsPatternPharmacologyPositioning AttributeProcessPropertyRecoveryRecovery of FunctionResearchResolutionSensorySignal TransductionStructureSubgroupSynapsesSystemTechniquesTherapeuticTherapeutic InterventionTissuesVagus nerve structureZebrafishaxon growthaxon injuryaxon regenerationbasecell regenerationchronic painimaging geneticsimprovedin vivoinsightknowledge basemembermotor deficitmutantnerve damagenerve injurynerve supplyneural patterningnovelperipheral nerve damageprogramsregenerativereinnervationscaffoldtherapy developmenttissue regenerationtooltranscriptome sequencing
项目摘要
Project Summary
Nerve damage is a common affliction that causes sensory and/or motor deficits. Recovery involves a
regenerative process in which damaged axons within a nerve fiber must re-extend to the appropriate target
tissues, in a process known as target-specific regeneration. This process often fails in humans, leaving patients
with chronic health problems. Improving clinical outcomes requires a better understanding of how target-specific
regeneration is regulated. We know that components of the nerve support scaffold can guide axon re-extension
along simple paths. However, when axons reach nerve branch points, they require more specific guidance
mechanisms to differentiate between multiple paths and select the correct one. We have little understanding of
what environmental cues guide these decisions, and how they are appropriately interpreted by regrowing axons.
The objective of this proposal is to identify cellular and molecular mechanisms that regulate axon targeting
decisions to promote target-specific regeneration.
I have established the zebrafish vagus nerve as a model to elucidate mechanisms of target-specific axon
regeneration. Regenerating vagus axons select between five nerve branches to robustly re-innervate the correct
target tissue, although how they do so is not known. I hypothesize that two non-mutually-exclusive mechanisms
regulate target-specific regeneration: 1) chemosensation, in which a regenerating axon can interpret spatially
patterned chemical guidance cues in the environment that direct its growth; 2) fasciculation, in which a
regenerating axon can recognize undamaged axons that are innervating its intended target and use them as a
substrate for directed growth. The three aims of this proposal will comprehensively identify how growing axons
interact with their environment at the cell biological and molecular levels during target-specific regeneration. In
Aim 1, I will combine a novel single-cell chimera regeneration assay with live imaging and genetic and
pharmacological manipulations to establish a conceptual understanding of how in vivo axon-environment
interactions guide targeting decisions. In Aim 2, I will combine a novel method to label and isolate live neurons
based on their innervation target with in vivo and in vitro techniques to precisely measure how axons of each of
the five innervation target groups interact with other axons, and with chemical signals, in the environment. In Aim
3, I will combine innervation target-specific neuron isolation with RNAseq and mutant analysis for unbiased
identification of molecules that regulate target selection in each of the five innervation target groups. This study
will greatly enhance our fundamental understanding of how axons reinnervate their target tissues during
regeneration, and provide an important knowledge base to develop improved treatments for nerve damage.
项目摘要
神经损伤是导致感觉和/或运动缺陷的常见痛苦。恢复涉及a
再生过程,在神经纤维内受损的轴突必须重新扩展到适当的目标
组织,在称为目标特异性再生的过程中。这个过程通常在人类中失败,使患者失败
存在慢性健康问题。改善临床结果需要更好地了解目标特定目标
调节再生。我们知道神经支撑支架的组件可以指导轴突重新扩展
沿着简单的路径。但是,当轴突达到神经分支点时,它们需要更具体的指导
区分多个路径并选择正确的机制。我们对
哪些环境提示指导这些决定,以及如何通过再生轴突适当解释它们。
该建议的目的是识别调节轴突靶向的细胞和分子机制
促进目标特异性再生的决定。
我已经建立了斑马鱼迷走神经作为阐明目标特异性轴突机制的模型
再生。再生的迷走轴轴突在五个神经分支之间选择以鲁棒性重新启动正确
靶组织,尽管他们是如何做到的。我假设两种非截然不同的机制
调节目标特异性再生:1)化学敏化,其中再生轴突可以在空间上解释
将化学指导提示在环境中指导其增长; 2)着迷,其中
再生轴突可以识别未损坏的轴突,这些轴突将其预期目标支配并用作
底物定向增长。该提案的三个目标将全面确定轴突的生长方式
在目标特异性再生期间,在细胞生物学和分子水平上与环境相互作用。在
AIM 1,我将将一种新型的单细胞嵌合再生测定法与实时成像和遗传和
药理操作以建立对体内轴突环境的概念理解
互动指导目标决策。在AIM 2中,我将结合一种新颖的方法来标记和分离活神经元
基于它们具有体内和体外技术的神经靶标,以精确测量每个轴突的轴突
五个神经支配目标基团与其他轴突以及化学信号在环境中相互作用。目标
3,我将与RNASEQ和突变体分析结合神经靶靶神经元隔离和无偏的突变体分析
鉴定在五个神经支配靶基组中每个人中调节目标选择的分子。这项研究
将大大增强我们对轴突如何重新构造其目标组织的基本理解
再生,并提供一个重要的知识库,以开发改进的神经损伤治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam James Isabella其他文献
Adam James Isabella的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam James Isabella', 18)}}的其他基金
Spatiotemporal mechanisms of in vivo axon initiation and targeting during development
发育过程中体内轴突起始和靶向的时空机制
- 批准号:
10401212 - 财政年份:2021
- 资助金额:
$ 8.96万 - 项目类别:
Spatiotemporal mechanisms of in vivo axon initiation and targeting during development
发育过程中体内轴突起始和靶向的时空机制
- 批准号:
9771303 - 财政年份:2019
- 资助金额:
$ 8.96万 - 项目类别:
相似国自然基金
基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
- 批准号:52303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
多尺度低表面能粘合剂的构筑及织物基传感器稳定性提升机制研究
- 批准号:22302110
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
Reconfigurable 3D Origami Probes for Multi-modal Neural Interface
用于多模态神经接口的可重构 3D 折纸探针
- 批准号:
10738994 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
MLL1 drives collaborative leukocyte-endothelial cell signaling and thrombosis after coronavirus infection
MLL1在冠状病毒感染后驱动白细胞-内皮细胞信号传导和血栓形成
- 批准号:
10748433 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
The Role of Layilin as a Novel Regulator of Platelet Activation and Thromboinflammation
Layilin 作为血小板活化和血栓炎症的新型调节剂的作用
- 批准号:
10638243 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别: