Mechanisms of Target-Specific Axon Regeneration
靶标特异性轴突再生机制
基本信息
- 批准号:10610120
- 负责人:
- 金额:$ 8.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-15 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesivesAffectAffinityAmericanAxonBackBiologicalBiological AssayBrainCell Adhesion MoleculesCell surfaceCellsChemicalsChemotactic FactorsChimera organismChronicClinicalComplexConnective TissueCoupledCouplingCuesDevelopmentEmbryoEnvironmentExhibitsGeneticGoalsGrowthGrowth ConesHealthHumanIn VitroInjuryLabelMeasuresMethodsModelingMolecularMorphologyMotorMuscle fasciculationMutagenesisNatural regenerationNerveNerve FibersNerve RegenerationNeurogliaNeuronsOutcomePatientsPatternPharmacologyPositioning AttributeProcessPropertyRecoveryRecovery of FunctionResearchResolutionSensorySignal TransductionStructureSubgroupSynapsesSystemTechniquesTherapeuticTherapeutic InterventionTissuesVagus nerve structureZebrafishaxon growthaxon injuryaxon regenerationbasecell regenerationchronic painimaging geneticsimprovedin vivoinsightknowledge basemembermotor deficitmutantnerve damagenerve injurynerve supplyneural patterningnovelperipheral nerve damageprogramsregenerativereinnervationscaffoldtherapy developmenttissue regenerationtooltranscriptome sequencing
项目摘要
Project Summary
Nerve damage is a common affliction that causes sensory and/or motor deficits. Recovery involves a
regenerative process in which damaged axons within a nerve fiber must re-extend to the appropriate target
tissues, in a process known as target-specific regeneration. This process often fails in humans, leaving patients
with chronic health problems. Improving clinical outcomes requires a better understanding of how target-specific
regeneration is regulated. We know that components of the nerve support scaffold can guide axon re-extension
along simple paths. However, when axons reach nerve branch points, they require more specific guidance
mechanisms to differentiate between multiple paths and select the correct one. We have little understanding of
what environmental cues guide these decisions, and how they are appropriately interpreted by regrowing axons.
The objective of this proposal is to identify cellular and molecular mechanisms that regulate axon targeting
decisions to promote target-specific regeneration.
I have established the zebrafish vagus nerve as a model to elucidate mechanisms of target-specific axon
regeneration. Regenerating vagus axons select between five nerve branches to robustly re-innervate the correct
target tissue, although how they do so is not known. I hypothesize that two non-mutually-exclusive mechanisms
regulate target-specific regeneration: 1) chemosensation, in which a regenerating axon can interpret spatially
patterned chemical guidance cues in the environment that direct its growth; 2) fasciculation, in which a
regenerating axon can recognize undamaged axons that are innervating its intended target and use them as a
substrate for directed growth. The three aims of this proposal will comprehensively identify how growing axons
interact with their environment at the cell biological and molecular levels during target-specific regeneration. In
Aim 1, I will combine a novel single-cell chimera regeneration assay with live imaging and genetic and
pharmacological manipulations to establish a conceptual understanding of how in vivo axon-environment
interactions guide targeting decisions. In Aim 2, I will combine a novel method to label and isolate live neurons
based on their innervation target with in vivo and in vitro techniques to precisely measure how axons of each of
the five innervation target groups interact with other axons, and with chemical signals, in the environment. In Aim
3, I will combine innervation target-specific neuron isolation with RNAseq and mutant analysis for unbiased
identification of molecules that regulate target selection in each of the five innervation target groups. This study
will greatly enhance our fundamental understanding of how axons reinnervate their target tissues during
regeneration, and provide an important knowledge base to develop improved treatments for nerve damage.
项目概要
神经损伤是一种常见的疾病,会导致感觉和/或运动缺陷。恢复涉及
再生过程,神经纤维内受损的轴突必须重新延伸到适当的目标
组织,这一过程称为目标特异性再生。这个过程在人类身上经常失败,导致患者
患有慢性健康问题。改善临床结果需要更好地了解目标特异性如何
再生受到调节。我们知道神经支撑支架的组件可以引导轴突重新延伸
沿着简单的路径。然而,当轴突到达神经分支点时,它们需要更具体的引导
区分多条路径并选择正确路径的机制。我们对此知之甚少
哪些环境因素指导着这些决定,以及轴突再生如何适当地解释这些决定。
该提案的目的是确定调节轴突靶向的细胞和分子机制
促进特定目标再生的决策。
我建立了斑马鱼迷走神经作为模型来阐明目标特异性轴突的机制
再生。再生迷走神经轴突在五个神经分支之间进行选择,以强有力地重新支配正确的神经分支
目标组织,尽管它们如何做到这一点尚不清楚。我假设两种非互斥机制
调节目标特异性再生:1)化学感觉,其中再生轴突可以在空间上解释
环境中引导其生长的化学引导线索; 2) 肌束震颤,其中
再生轴突可以识别未受损的轴突,这些轴突正在刺激其预期目标,并将它们用作
定向生长的基质。该提案的三个目标将全面确定轴突的生长方式
在目标特异性再生过程中,它们在细胞生物学和分子水平上与环境相互作用。在
目标 1,我将把一种新型单细胞嵌合体再生测定与实时成像和遗传和
药理学操作以建立对体内轴突环境如何的概念性理解
互动指导目标决策。在目标 2 中,我将结合一种新颖的方法来标记和分离活神经元
基于他们的神经支配目标,利用体内和体外技术来精确测量每个轴突的情况
五个神经支配目标组与环境中的其他轴突和化学信号相互作用。瞄准
3,我将把神经支配目标特异性神经元分离与RNAseq和突变体分析结合起来,以实现无偏
识别调节五个神经支配目标组中每个目标选择的分子。这项研究
将极大地增强我们对轴突如何重新支配其目标组织的基本理解
再生,并为开发神经损伤的改进治疗方法提供重要的知识基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam James Isabella其他文献
Adam James Isabella的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam James Isabella', 18)}}的其他基金
Spatiotemporal mechanisms of in vivo axon initiation and targeting during development
发育过程中体内轴突起始和靶向的时空机制
- 批准号:
10401212 - 财政年份:2021
- 资助金额:
$ 8.96万 - 项目类别:
Spatiotemporal mechanisms of in vivo axon initiation and targeting during development
发育过程中体内轴突起始和靶向的时空机制
- 批准号:
9771303 - 财政年份:2019
- 资助金额:
$ 8.96万 - 项目类别:
相似国自然基金
聚电解质络合作用调控的高初黏性大豆蛋白粘合剂构建及增强机制研究
- 批准号:52303059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
仿深共晶溶剂小分子类低温粘合剂的设计制备及粘附机制研究
- 批准号:22308299
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
- 批准号:52303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
Reconfigurable 3D Origami Probes for Multi-modal Neural Interface
用于多模态神经接口的可重构 3D 折纸探针
- 批准号:
10738994 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
MLL1 drives collaborative leukocyte-endothelial cell signaling and thrombosis after coronavirus infection
MLL1在冠状病毒感染后驱动白细胞-内皮细胞信号传导和血栓形成
- 批准号:
10748433 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
The Role of Layilin as a Novel Regulator of Platelet Activation and Thromboinflammation
Layilin 作为血小板活化和血栓炎症的新型调节剂的作用
- 批准号:
10638243 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别: