Systems Genetics of Bone Regeneration
骨再生的系统遗传学
基本信息
- 批准号:10606560
- 负责人:
- 金额:$ 69.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAcademic Medical CentersAddressAffectBayesian NetworkBilateralBiological ProcessBone DensityBone RegenerationBone neoplasmsCandidate Disease GeneCellsChicagoComplexDataDefectDental CareDental ImplantsDiseaseDistraction OsteogenesisEventExcisionFemurFractureGenesGeneticGenetic VariationGenetic studyGenomeGenotypeHeritabilityHeterozygoteImpaired healingImpairmentIn VitroInflammationInjuryKnock-outKnockout MiceKnowledgeMapsMarrowMeasuresMechanicsMolecularMorbidity - disease rateMusNetwork-basedOrthopedic ProceduresOrthopedicsOsteoporosisPathway interactionsPatientsPhenotypePopulationPublic HealthQuantitative Trait LociRegenerative responseResearchRoleSingle Nucleotide PolymorphismSkeletonStress FracturesSystemTestingTherapeutic InterventionTissuesTraumaUniversitiesVirginiabonebone fracture repairbone leadbone repaircandidate identificationcausal variantcell typecommon treatmentdesigndiverse dataexperimental studygene discoverygene networkgenetic analysisgenetic approachgenetic variantgenome wide association studyimprovedin vivoindexinginnovationintramembranous bonelong bonemesenchymal stromal cellmodel organismmouse modelnew therapeutic targetnovelosteogenicparticipant enrollmentperiostinrepairedsample fixationsingle-cell RNA sequencingskeletalsocietal coststargeted treatmenttherapeutic targettomographytraittranscriptomics
项目摘要
Project Summary:
There are over 1 million cases of failed bone repair in the U.S. annually, resulting in substantial patient
morbidity and societal costs. The genetic factors affecting bone repair are poorly understood because the field
has been limited by having to rely on interrogating genes with known relevance for osteoporosis or other
biological processes such as inflammation. These studies have identified only a handful of genes. In contrast,
systems genetics studies of many phenotypes including skeletal traits such as bone mineral density have
already identified multiple novel genetic variants that can be targeted for therapeutic intervention.
Unfortunately, the study of bone repair in patients is not readily amenable to this approach because of the
difficulty in enrolling patients in studies after the occurrence of the index event, great variability in injury types
and lack of simple readouts to assess repair. These barriers can be overcome by using a model organism with
a well-defined injury mechanism and simple readout to characterize the repair phenotype. Thus, we will use
systems genetics to discover novel genes influencing intramembranous bone regeneration induced by marrow
ablation in a mouse model. Intramembranous bone repair is integral to fracture healing, distraction
osteogenesis, fixation of orthopedic and dental implants to the skeleton and repair of large defects caused by
trauma or necessitated by resection of bone tumors. In Aim 1, we will perform the first genome-wide
association study (GWAS) for bone repair by measuring the intramembranous bone regenerative response
after marrow ablation in Diversity Outbred (N=1000) mice. We will identify genes responsible for bone
regeneration quantitative trait loci (QTL) and expression QTL using multiple fine-mapping approaches and
transcriptomic data generated from single cell RNA-seq. In Aim 2, we will use Bayesian networks and identify
genes highly connected to known regulators of bone traits using Key Driver Analysis to identify candidate
causal genes for the bone regenerative response. In Aim 3, we will validate the role of Periostin, a recently
identified candidate gene, and at least one additional candidate identified in the first two aims. We will begin by
testing the role of Periostin, a gene implicated in intramembranous bone regeneration in preliminary
transcriptomic, lineage tracing and key driver analyses. The project will significantly increase our
understanding of the genetics of bone repair. Genes that we identify will serve as potential therapeutic targets
capable of improving multiple orthopedic and dental procedures which rely on bone repair.
项目概要:
美国每年有超过 100 万例骨修复失败病例,导致大量患者死亡
发病率和社会成本。人们对影响骨修复的遗传因素知之甚少,因为该领域
由于必须依赖于已知与骨质疏松症或其他疾病相关的基因,因此受到限制
生物过程,例如炎症。这些研究只鉴定出了少数基因。相比之下,
对许多表型(包括骨矿物质密度等骨骼特征)的系统遗传学研究已经
已经发现了多种可用于治疗干预的新型遗传变异。
不幸的是,患者骨修复的研究并不容易采用这种方法,因为
指标事件发生后难以将患者纳入研究,损伤类型差异很大
并且缺乏评估修复的简单读数。这些障碍可以通过使用模型生物来克服
明确的损伤机制和简单的读数来表征修复表型。因此,我们将使用
系统遗传学发现影响骨髓诱导的膜内骨再生的新基因
小鼠模型中的消融。膜内骨修复是骨折愈合、牵引的重要组成部分
成骨、将骨科和牙科植入物固定到骨骼上以及修复由以下原因引起的大缺陷
外伤或因骨肿瘤切除而必需的。在目标 1 中,我们将进行首次全基因组研究
通过测量膜内骨再生反应进行骨修复的关联研究(GWAS)
Diversity Outbred (N=1000) 小鼠骨髓消融后。我们将鉴定负责骨骼的基因
使用多种精细作图方法进行再生数量性状位点 (QTL) 和表达 QTL
从单细胞 RNA-seq 生成的转录组数据。在目标 2 中,我们将使用贝叶斯网络并识别
使用关键驱动分析来识别与已知的骨性状调节因子高度相关的基因
骨再生反应的因果基因。在目标 3 中,我们将验证 Periostin 的作用,Periostin 是最近的一种药物
确定的候选基因,以及在前两个目标中确定的至少一个附加候选基因。我们将从
初步测试 Periostin(一种与膜内骨再生有关的基因)的作用
转录组学、谱系追踪和关键驱动因素分析。该项目将显着提高我们的
了解骨修复的遗传学。我们确定的基因将作为潜在的治疗靶点
能够改善多种依赖骨修复的骨科和牙科手术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles R Farber其他文献
Charles R Farber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles R Farber', 18)}}的其他基金
A Systems Genetics Approach to Identify BMD Genes
识别 BMD 基因的系统遗传学方法
- 批准号:
9929108 - 财政年份:2019
- 资助金额:
$ 69.93万 - 项目类别:
A Systems Genetics Approach to Identify BMD Genes
识别 BMD 基因的系统遗传学方法
- 批准号:
10359056 - 财政年份:2018
- 资助金额:
$ 69.93万 - 项目类别:
A Systems Genetics Approach to Identify BMD Genes
识别 BMD 基因的系统遗传学方法
- 批准号:
10582131 - 财政年份:2018
- 资助金额:
$ 69.93万 - 项目类别:
Discovery of Bone Formation Genes through Integrative Genomics
通过整合基因组学发现骨形成基因
- 批准号:
8471654 - 财政年份:2011
- 资助金额:
$ 69.93万 - 项目类别:
Discovery of Bone Formation Genes through Integrative Genomics
通过整合基因组学发现骨形成基因
- 批准号:
8848036 - 财政年份:2011
- 资助金额:
$ 69.93万 - 项目类别:
Discovery of Bone Formation Genes through Integrative Genomics
通过整合基因组学发现骨形成基因
- 批准号:
8299449 - 财政年份:2011
- 资助金额:
$ 69.93万 - 项目类别:
相似海外基金
Role of periostin expressing cells in intramembranous bone regeneration
骨膜蛋白表达细胞在膜内骨再生中的作用
- 批准号:
10215807 - 财政年份:2021
- 资助金额:
$ 69.93万 - 项目类别:
Role of periostin expressing cells in intramembranous bone regeneration
骨膜蛋白表达细胞在膜内骨再生中的作用
- 批准号:
10556659 - 财政年份:2021
- 资助金额:
$ 69.93万 - 项目类别:
Role of periostin expressing cells in intramembranous bone regeneration
骨膜蛋白表达细胞在膜内骨再生中的作用
- 批准号:
10646451 - 财政年份:2021
- 资助金额:
$ 69.93万 - 项目类别:
Directed connectivity analysis of resting-state SEEG and DWI to improve lateralization and localization in focal epilepsy
静息态 SEEG 和 DWI 的定向连接分析可改善局灶性癫痫的偏侧化和定位
- 批准号:
10533285 - 财政年份:2021
- 资助金额:
$ 69.93万 - 项目类别: