How do neurons coordinate alternative energy sources to meet the demands of computation?
神经元如何协调替代能源以满足计算需求?
基本信息
- 批准号:10606195
- 负责人:
- 金额:$ 45.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2027-11-30
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAnatomyAnimalsAxonBehaviorBiochemical PathwayBlood flowBrainBrain imagingCellsCouplesCouplingDendritesDiseaseDrosophila genusElementsEnergy MetabolismEnergy consumptionEnergy-Generating ResourcesEsthesiaExpenditureFunctional Magnetic Resonance ImagingFutureGenesGeneticGlucoseGlycolysisGoalsHumanIn VitroIndividualInvestigationLinkMeasuresMetabolicMetabolic DiseasesMetabolismMethodsMitochondriaModelingMonitorMovementNeurologicNeuronsNeurosciencesOxidative PhosphorylationPathway interactionsPatternPerceptionPhysiologicalPositron-Emission TomographyProductionProxyPublishingPyruvateReactionSensoryShapesSignal TransductionSystemTestingTimeWorkcell typecostenergy balancefluorescence imagingflyimaging modalityin vitro Modelin vivoinsightmetabolic imagingneuralneural patterningneuroimagingneuroregulationneurotransmissionnovel therapeuticsoperationoptogeneticssensorsensory inputsensory stimulusstereotypytherapeutic developmenttwo-photon
项目摘要
Project Summary
How do neurons coordinate alternative energy sources to meet
the demands of neural computation?
PI:Clandinin
The brain is energetically expensive, a metabolic cost that is intrinsic to neural activity and hence a
defining feature of how the brain computes. As a result of this energy intensive operation, the main methods
for measuring changes in neural activity in humans, such as functional magnetic resonance imaging (fMRI),
actually infer neural activity by measuring changes in blood flow, a proxy for local energy consumption.
Moreover, many diseases that alter the efficiency and balance of energy production are characterized by
profound deficits in brain function. However, how neural activity shapes energy production at the level of
individual cells, circuits and across the brain are only incompletely understood, particularly in the context of
active sensation and behavior.
Longstanding work in the field, based in vitro models of single cells and human neuroimaging, have
revealed how different pathways for energy production react to changes in neural activity, responding when
increases in neural activity cause depletion of ATP, a core cellular energy currency. Our recent work using the
intact brain of the behaving fruit fly build on these results, and revealed a new element to the coupling between
metabolism and energy production, namely that cells use current levels of neural activity to predict future
energy needs. Thus, this project seeks to answer how the reactive and predictive elements of neural-metabolic
energy coupling interact.
The proposed work focuses on three key questions. First, do different neuron types, with distinct
patterns of activity in the intact brain, display differences in how they react to, and predict, metabolic load?
Second, how do neurons balance energy production via two alternative energy sources, namely glycolysis and
oxidative phosphorylation, to both react to metabolic cost and predict future expenditures? Finally, how are
these metabolic loads coordinated across circuits in behaving animals detecting sensory stimuli? We
hypothesize that because neuronal activity levels differ substantially across cell types, and because glycolysis
and oxidative phosphorylation can produce ATP with different latencies and efficiencies, subcellular
compartments, neurons and circuits dynamically switch between alternative energy sources to both react to
computational demand and predict future metabolic need. To test this hypothesis, we propose to use two
photon imaging of fluorescent sensors of neural activity and metabolic flux, combined with genetic and
optogenetic perturbations of specific cell types, using the adult fruit fly brain as a model.
As many of the genes involved in energy metabolism are evolutionarily conserved between humans
and flies, deepening our understanding of how neural activity couples to energy metabolism in vivo will
increasing our understanding of the neural impacts of metabolic diseases, possibly opening new therapeutic
avenues for future investigation.
项目概要
神经元如何协调替代能源以满足
神经计算的需求?
PI:克兰丁素
大脑的能量消耗很高,这是神经活动固有的代谢成本,因此
大脑如何计算的定义特征。由于这种能源密集型操作,主要方法
用于测量人类神经活动的变化,例如功能磁共振成像(fMRI),
实际上通过测量血流量的变化来推断神经活动,血流量是局部能量消耗的代表。
此外,许多改变能量生产效率和平衡的疾病的特征是
大脑功能严重缺陷。然而,神经活动如何影响能量的产生
单个细胞、回路和整个大脑的了解还不完全,特别是在
活跃的感觉和行为。
该领域基于单细胞体外模型和人类神经影像学的长期工作已经
揭示了不同的能量产生途径如何对神经活动的变化做出反应,当
神经活动的增加会导致核心细胞能量货币 ATP 的消耗。我们最近的工作使用
行为果蝇的完整大脑建立在这些结果的基础上,并揭示了两者之间耦合的新元素
新陈代谢和能量产生,即细胞利用当前的神经活动水平来预测未来
能源需求。因此,该项目旨在回答神经代谢的反应性和预测性因素如何
能量耦合相互作用。
拟议的工作重点关注三个关键问题。首先,做不同的神经元类型,具有不同的
完整大脑中的活动模式是否显示出它们对代谢负荷的反应和预测的差异?
其次,神经元如何通过两种替代能源(即糖酵解和
氧化磷酸化,对代谢成本做出反应并预测未来的支出?最后,怎么样
这些代谢负荷在动物检测感官刺激的行为中跨回路协调?我们
假设因为不同细胞类型的神经元活动水平有很大差异,并且因为糖酵解
氧化磷酸化可以产生不同潜伏期和效率的 ATP,亚细胞
隔室、神经元和电路在替代能源之间动态切换,以对
计算需求并预测未来的代谢需求。为了检验这个假设,我们建议使用两个
神经活动和代谢流荧光传感器的光子成像,结合遗传和
使用成年果蝇大脑作为模型,对特定细胞类型进行光遗传学扰动。
由于许多参与能量代谢的基因在人类之间进化上是保守的
和果蝇,加深我们对神经活动如何与体内能量代谢耦合的理解
增加我们对代谢疾病神经影响的理解,可能开辟新的治疗方法
未来调查的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Robert Clandinin其他文献
Thomas Robert Clandinin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Robert Clandinin', 18)}}的其他基金
Population Neural Activity Mediating Sensory Perception Across Modalities
群体神经活动介导跨模态的感官知觉
- 批准号:
10310712 - 财政年份:2021
- 资助金额:
$ 45.34万 - 项目类别:
Population Neural Activity Mediating Sensory Perception Across Modalities
群体神经活动介导跨模态的感官知觉
- 批准号:
10242189 - 财政年份:2018
- 资助金额:
$ 45.34万 - 项目类别:
Population Neural Activity Mediating Sensory Perception Across Modalities
群体神经活动介导跨模态的感官知觉
- 批准号:
9789712 - 财政年份:2018
- 资助金额:
$ 45.34万 - 项目类别:
A Brain Circuit Program for Understanding the Sensorimotor Basis of Behavior
用于理解行为的感觉运动基础的脑回路程序
- 批准号:
10202757 - 财政年份:2017
- 资助金额:
$ 45.34万 - 项目类别:
Revealing circuit control of neuronal excitation with next-generation voltage indicators
使用下一代电压指示器揭示神经元兴奋的电路控制
- 批准号:
9380741 - 财政年份:2017
- 资助金额:
$ 45.34万 - 项目类别:
A Brain Circuit Program for Understanding the Sensorimotor Basis of Behavior
用于理解行为的感觉运动基础的脑回路程序
- 批准号:
9444301 - 财政年份:2017
- 资助金额:
$ 45.34万 - 项目类别:
Project 3: Neural Basis of Motion Guidance Loops
项目 3:运动引导环的神经基础
- 批准号:
10202763 - 财政年份:2017
- 资助金额:
$ 45.34万 - 项目类别:
A new strategy for cell-type specific gene disruption in flies and mice
果蝇和小鼠细胞类型特异性基因破坏的新策略
- 批准号:
9297370 - 财政年份:2015
- 资助金额:
$ 45.34万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 45.34万 - 项目类别:
Exploratory Analysis Tools for Developmental Studies of Brain Microstructure with Diffusion MRI
利用扩散 MRI 进行脑微结构发育研究的探索性分析工具
- 批准号:
10645844 - 财政年份:2023
- 资助金额:
$ 45.34万 - 项目类别:
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
- 批准号:
10734258 - 财政年份:2023
- 资助金额:
$ 45.34万 - 项目类别:
Thalamo-prefrontal circuit maturation during adolescence
丘脑-前额叶回路在青春期成熟
- 批准号:
10585031 - 财政年份:2023
- 资助金额:
$ 45.34万 - 项目类别:
DNA methylation signatures of Alzheimer's disease in aged astrocytes
老年星形胶质细胞中阿尔茨海默病的 DNA 甲基化特征
- 批准号:
10807864 - 财政年份:2023
- 资助金额:
$ 45.34万 - 项目类别: