Computational Modeling Core_Frank
计算建模核心_Frank
基本信息
- 批准号:10601139
- 负责人:
- 金额:$ 20.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAffectAnhedoniaAnimal ExperimentsAnxietyAnxiety DisordersBasal GangliaBehaviorBehavioralBenchmarkingBiological MarkersBrainChronic stressClassificationClinicalComplementComputer ModelsConflict (Psychology)Corpus striatum structureDataDecision MakingDeep Brain StimulationDiagnosisDiffusionDimensionsDiseaseElectrocorticogramEpilepsyGoalsGraphHumanIncentivesIndividualInvestigationLearningLinkMachine LearningMapsMeasuresMental DepressionMethodsModelingMood DisordersMotivationParameter EstimationPatientsPharmaceutical PreparationsPhenotypePhysiologicalPopulationProcessPsychiatryReaction TimeRewardsRodentRodent ModelSamplingSensitivity and SpecificitySeveritiesShapesSignal TransductionSiteStressStudy modelsSymptomsSystemTask PerformancesTestingTherapeuticTranslationsUniversitiesValidationVariantantagonistapproach avoidance behaviorclinical predictorscognitive neurosciencecomputer frameworkdepressive symptomsexperiencefrontal lobefunctional magnetic resonance imaging/electroencephalographyimprovedmachine learning classificationmachine learning methodmicrostimulationneuralneural correlateneural networkneuromechanismneurotransmissionnociceptinnonhuman primatenovelpsychologicresponsestatisticsstressorsuicidal
项目摘要
PROJECT SUMMARY (Computational Modeling Core, Core Leader: Frank, Brown University)
The overarching goal of the Computational Modeling Core is to provide a common formal framework that can
quantify dynamic decision processes in approach-avoidance conflict across species in Projects 1-4, including
the impact of neural recordings and manipulations. We leverage hierarchical Bayesian parameter estimation of
the drift diffusion model (HDDM), which captures not only choice proportions for varying reward, aversion, and
conflict, but also the full response time distributions associated with these choices. HDDM facilitates reliable
estimation of decision parameters and their modulation by trial-by-trial variance in neural signals, and supports
Bayesian hypothesis testing for how these parameters may differ as a function of clinical status, brain state, and
manipulations (e.g., nociceptin antagonism, acute/chronic stress, stimulation). We have shown how such
“computational biomarkers” can provide enhanced sensitivity to discriminate between patient conditions and
symptoms relative to traditional measures of behavior and brain activity. We will leverage neural recordings and
stimulation from frontal cortex and basal ganglia across species to assess whether their variability is
parametrically related to motivated evidence accumulation, and whether these signals are altered with neural
manipulations and in clinical populations. Machine learning methods will quantify the degree to which such
quantitative model fitting improves (1) classification of patient condition and brain state relative to the same
methods applied to the raw behavioral and neural data or their summary statistics, and (2) our ability to map
disease course, including suicidality and symptoms. Building on our extensive experience in neural networks
and levels of computation involved in motivated learning and decision making across species, our computational
framework will facilitate not only enhanced sensitivity to discriminate between clinical conditions, but will also
identify hypotheses about the mechanisms involved, which will be tested via causal manipulations using the
same quantitative framework. For example, our preliminary modeling studies indicate that variability in sub-
populations within pregenual cingulate activity in non-human primates affects motivated evidence accumulation,
and that in humans, the same parameter distinguishes MDD vs. healthy subjects and scales with symptoms.
Moreover, these computational biomarkers are critical for predicting whether any individual is in one clinical state
or another, whereas classification based on behavior and/or brain activity alone is at chance levels. The causal
neural and psychological mechanisms of these effects will be further delineated and greatly expanded by utilizing
the same quantitative framework with causal manipulations and more precise temporal recordings.
Contribution to Overall Center Goals & Interactions with Other Center Components. As the Computational
Modeling Core, our framework applies to approach-avoidance decision making across species and methods,
and will be applied across all Projects. We will benefit from interactions amongst experts with complementary
expertise in systems and cognitive neuroscience, psychiatry, computational modeling, and machine learning.
项目摘要(计算建模核心,核心负责人:弗兰克,布朗大学)
计算建模核心的总体目标是提供一个通用的形式框架,可以
量化项目 1-4 中物种间接近-回避冲突的动态决策过程,包括
我们利用分层贝叶斯参数估计的神经记录和操作的影响。
漂移扩散模型 (HDDM),它不仅捕获不同奖励、厌恶和变化的选择比例
冲突,而且与这些选择相关的完整响应时间分布也促进了可靠性。
通过神经信号中的逐次试验方差估计决策参数及其调制,并支持
贝叶斯假设检验这些参数如何随着临床状态、大脑状态和
我们已经展示了如何进行此类操作(例如,伤害感受肽拮抗作用、急性/慢性应激、刺激)。
“计算生物标志物”可以提供增强的灵敏度来区分患者的状况和
我们将利用神经记录和传统的行为和大脑活动测量的相关症状。
来自不同物种的额叶皮层和基底神经节的刺激,以评估它们的变异性是否
与动机性证据积累参数相关,以及这些信号是否与神经相关
操作和临床人群中的机器学习方法将量化这种程度。
模型拟合改进了 (1) 患者状况和大脑状态的分类
应用于原始行为和神经数据或其汇总统计数据的方法,以及(2)我们绘制地图的能力
疾病过程,包括自杀和症状 基于我们在神经网络方面的丰富经验。
以及涉及跨物种动机学习和决策的计算水平,我们的计算
框架不仅将有助于提高区分临床状况的敏感性,而且还将
确定有关所涉及机制的假设,这些假设将通过因果操作进行测试
例如,我们的初步建模研究表明子项的可变性。
非人类灵长类动物的前扣带回活动中的种群影响动机证据的积累,
在人类中,相同的参数可以区分 MDD 与健康受试者,并根据症状进行量表。
此外,这些计算生物标记对于预测任何个体是否处于一种临床状态至关重要
或其他,而仅基于行为和/或大脑活动的分类是偶然水平的。
这些效应的神经和心理机制将通过利用得到进一步描述和极大扩展
具有因果操作和更精确的时间记录的相同定量框架。
作为计算,对中心总体目标的贡献以及与其他中心组件的交互。
建模核心,我们的框架适用于跨物种和方法的接近回避决策,
并将应用于所有项目,我们将从具有互补性的专家之间的互动中受益。
系统和认知神经科学、精神病学、计算建模和机器学习方面的专业知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL J. FRANK其他文献
MICHAEL J. FRANK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL J. FRANK', 18)}}的其他基金
Brown Postdoctoral Training Program in Computational Psychiatry
布朗计算精神病学博士后培训项目
- 批准号:
10388230 - 财政年份:2021
- 资助金额:
$ 20.43万 - 项目类别:
Brown Postdoctoral Training Program in Computational Psychiatry
布朗计算精神病学博士后培训项目
- 批准号:
10647861 - 财政年份:2021
- 资助金额:
$ 20.43万 - 项目类别:
Brown Postdoctoral Training Program in Computational Psychiatry
布朗计算精神病学博士后培训项目
- 批准号:
10206628 - 财政年份:2021
- 资助金额:
$ 20.43万 - 项目类别:
相似国自然基金
干旱内陆河高含沙河床对季节性河流入渗的影响机制
- 批准号:52379031
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
- 批准号:32371610
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
- 批准号:72373005
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
- 批准号:82360655
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Serotonergic modulation of the circuits and cell-types of the lateral habenula
外侧缰核电路和细胞类型的血清素调节
- 批准号:
10713125 - 财政年份:2023
- 资助金额:
$ 20.43万 - 项目类别:
Probing brain circuit and behavior with protein:protein interaction modulators
用蛋白质探测大脑回路和行为:蛋白质相互作用调节剂
- 批准号:
10607051 - 财政年份:2023
- 资助金额:
$ 20.43万 - 项目类别:
Biochemical Studies Underlying Acute Ethanol's Antidepressant-like effects during Withdrawal in a Preclinical Model of Ethanol Dependence
乙醇依赖临床前模型中戒断期间乙醇急性抗抑郁样作用的生化研究
- 批准号:
10595193 - 财政年份:2023
- 资助金额:
$ 20.43万 - 项目类别: