Expanding the set of genetically encoded tools for compartment-specific manipulation of redox metabolism in living cells
扩展用于活细胞中氧化还原代谢的隔室特异性操作的基因编码工具集
基本信息
- 批准号:10602541
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAgingAntioxidantsAutomobile DrivingBioenergeticsCell modelCell physiologyCellsChronicCommunicationConsumptionDependenceDevelopmentDiabetes MellitusDiseaseDrosophila genusElectronsEnergy MetabolismEngineeringEnvironmentEnzymesEtiologyGoalsHomeostasisLifeLightLinkLongevityMaintenanceMalignant NeoplasmsMembrane PotentialsMetabolicMetabolismMethodologyMitochondrial DiseasesNADHNADPNerve DegenerationOxidasesOxidation-ReductionPathologyProcessProductionReactionResistanceResolutionRoleSignal TransductionStressSystemTechnologyTestingTherapeuticTimeVariantcofactorexhausthealthspanimprovedmetabolic abnormality assessmentmitochondrial membranemodel organismnoveloxidationscreeningsmall moleculespatiotemporaltool
项目摘要
Abstract
One of the most important organizing principles in all life forms is the uninterrupted flow of electrons through
reactions that involve reduction-oxidation (redox) changes. Not surprisingly, an imbalance in this fundamental
cellular process, i.e. redox homeostasis, has been attributed to numerous diseases, including mitochondrial
disorders, cancer, diabetes, neurodegeneration and the aging process itself. The redox cofactors, NADH and
NADPH, and their oxidized forms are key contributors to the cellular redox environment, but it is unclear whether
perturbations in their metabolism contribute directly to disease etiology or is simply a reflection of ongoing
pathology. For most of these conditions, it is not known whether the observed redox imbalance is linked to
altered bioenergetic efficiency or to a cellular process that is neither linked to ATP production nor to
maintenance of the mitochondrial membrane potential. Another major challenge is that some of these redox
reactions are redundant, i.e. have overlapping substrate dependency (towards NAD(P)H) or are found in
more than one cellular compartment. To systematically address these pressing questions, methodology to
modulate the steady-state concentrations of the NADH and NADPH cofactors is needed. Recently, we have
developed genetically encoded tools to selectively decrease the NADH/NAD+ and NADPH/NADP+ ratios in
live cells that are based on the heterologous expression of native or engineered versions of bacterial H 2O-
forming NAD(P)H oxidases. In this proposal, we plan to expand our toolkit by developing a genetically
encoded tool for the direct modulation of NADH reductive stress (i.e. increased NADH/NAD+ ratio) (Project
1). Preliminary screening of several bacterial enzymes has furnished promising candidates for driving NADH
overproduction in different cellular compartments. The development of compartment-specific tools will enable
studies to elucidate how overproduction of reducing equivalents in one cellular compartment is communicated
to another and how NADH reductive stress remodels cellular metabolism (Project 2a). Multiple lines of
evidence indicate that NAD(P)H-consuming redox cycling agents at low concentrations mildly exhaust
antioxidant systems and that the resulting pro-oxidative shift promotes stress resistance and improves heathspan
in several model organisms. We are using Drosophila as a model organism, to directly test whether redox
modulation in either the oxidative or reductive direction are correlated with stress resistance, healthspan and
lifespan (Project 2b). A third goal is to develop variants of our genetically encoded tools that are controlled by
small molecules or by light to afford greater spatiotemporal control (Project 3). The latter is especially
important as many redox processes crucial for redox signaling or energy metabolism and dysregulated in
pathologies, occur rapidly (on an acute time scale). The successful completion of our studies will lead to
enabling technologies for modulating the redox environment, which will be widely useful for metabolic studies on
an acute or chronic time scale at the resolution of subcellular compartments.
抽象的
所有生命形式中最重要的组织原则之一是电子不间断地流过
涉及还原氧化(氧化还原)变化的反应。毫不奇怪,这一基本面的不平衡
细胞过程,即氧化还原稳态,已归因于许多疾病,包括线粒体疾病
疾病、癌症、糖尿病、神经退行性疾病和衰老过程本身。氧化还原辅助因子 NADH 和
NADPH 及其氧化形式是细胞氧化还原环境的关键贡献者,但尚不清楚是否
新陈代谢的扰动直接导致疾病病因,或者只是持续存在的反映
病理。对于大多数这些条件,尚不清楚观察到的氧化还原不平衡是否与
改变了生物能效率或与 ATP 产生无关或与 ATP 产生无关的细胞过程
维持线粒体膜电位。另一个主要挑战是其中一些氧化还原
反应是多余的,即具有重叠的底物依赖性(朝向 NAD(P)H)或在
不止一个细胞室。为了系统地解决这些紧迫的问题,方法论
需要调节 NADH 和 NADPH 辅因子的稳态浓度。最近,我们有
开发了基因编码工具来选择性降低 NADH/NAD+ 和 NADPH/NADP+ 比率
基于细菌 H 2O- 的天然或工程版本的异源表达的活细胞
形成 NAD(P)H 氧化酶。在本提案中,我们计划通过开发基因技术来扩展我们的工具包
用于直接调节 NADH 还原应激(即增加 NADH/NAD+ 比率)的编码工具(项目
1)。对几种细菌酶的初步筛选为驱动 NADH 提供了有希望的候选者
不同细胞区室的过度生产。隔间专用工具的开发将使
研究阐明一个细胞室中还原当量的过量产生是如何传达的
另一个问题是 NADH 还原应激如何重塑细胞代谢(项目 2a)。多行
有证据表明,低浓度的 NAD(P)H 消耗氧化还原循环剂会轻微耗尽
抗氧化系统以及由此产生的促氧化转变可促进抗应激能力并改善健康寿命
在几种模式生物中。我们使用果蝇作为模式生物,直接测试氧化还原是否
氧化或还原方向的调节与应激抵抗力、健康寿命和
寿命(项目 2b)。第三个目标是开发我们的基因编码工具的变体,这些工具由
小分子或光来提供更大的时空控制(项目 3)。后者尤其是
重要的是,许多氧化还原过程对于氧化还原信号或能量代谢至关重要,并且在
病理,发生迅速(在急性时间尺度上)。成功完成我们的学习将导致
调节氧化还原环境的技术,将广泛用于代谢研究
亚细胞区室分辨率的急性或慢性时间尺度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valentin Cracan其他文献
Valentin Cracan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valentin Cracan', 18)}}的其他基金
NAD(P)H quinone oxidoreductase 1 (NQO1)-mediated bypass of mitochondrial electron transport chain with artificial and endogenous substrates
NAD(P)H 醌氧化还原酶 1 (NQO1) 介导的人工和内源底物线粒体电子传递链旁路
- 批准号:
10789749 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Expanding the set of genetically encoded tools for compartment-specific manipulation of redox metabolism in living cells
扩展用于活细胞中氧化还原代谢的隔室特异性操作的基因编码工具集
- 批准号:
10272745 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Expanding the set of genetically encoded tools for compartment-specific manipulation of redox metabolism in living cells
扩展用于活细胞中氧化还原代谢的隔室特异性操作的基因编码工具集
- 批准号:
10437022 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Expanding the set of genetically encoded tools for compartment-specific manipulation of redox metabolism in living cells
扩展用于活细胞中氧化还原代谢的隔室特异性操作的基因编码工具集
- 批准号:
10582469 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Defining and targeting the compartmentalization of redox metabolism in aging using novel genetically encoded tools
使用新型基因编码工具定义和瞄准衰老过程中氧化还原代谢的划分
- 批准号:
10266841 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Engineered flavin-dependent enzymes for probing redox environment and regulation
用于探测氧化还原环境和调节的工程黄素依赖性酶
- 批准号:
9223586 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Engineered flavin-dependent enzymes for probing redox environment and regulation
用于探测氧化还原环境和调节的工程黄素依赖性酶
- 批准号:
10112916 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Engineered flavin-dependent enzymes for probing redox environment and regulation
用于探测氧化还原环境和调节的工程黄素依赖性酶
- 批准号:
9883800 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
- 批准号:
10660332 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Integrative Data Science Approach to Advance Care Coordination of ADRD by Primary Care Providers
综合数据科学方法促进初级保健提供者对 ADRD 的护理协调
- 批准号:
10722568 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Telomerase RNP Prisonbreaks from Phase-Separated Nuclear Body
端粒酶 RNP 从相分离核体中越狱
- 批准号:
10714880 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
The Social-Medical Network: Using a Network Approach to Explore the Integration of Informal and Formal Care Networks of Older Adults
社会医疗网络:利用网络方法探索老年人非正式和正式护理网络的整合
- 批准号:
10724756 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别: