Mechanisms of Microbial Competition During Salmonella Infection
沙门氏菌感染期间微生物竞争的机制
基本信息
- 批准号:10600681
- 负责人:
- 金额:$ 6.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AcidsAmino AcidsAnimal ModelAntibiotic ResistanceAntibiotic TherapyAntibioticsAttenuatedBiochemical ReactionBuffersCarboxy-LyasesCatabolismCatalogingCell DeathCommunitiesConsumptionCytoplasmCytosolDietary FiberDisciplineDiseaseEcosystemEngineeringEnterobacteriaceaeEnvironmentFamilyFermentationGleanGnotobioticGoalsGrowthHomeostasisHost DefenseHypoxiaImmunocompromised HostIn VitroIndividualInfectionInflammationInflammatory ResponseIntestinesInvadedKnowledgeLarge IntestineLinkMediatingMetabolic PathwayMicrobeModelingModificationMusNutrientNutritionalOutcomePathway interactionsPatientsPlayPredispositionProductionProtonsPublic HealthReactionResearchResistanceRoleSalmonellaSalmonella entericaSalmonella infectionsSalmonella typhimuriumSecureSupplementationTestingToxic effectTreatment FailureType III Secretion System PathwayVirulenceVirulence FactorsVolatile Fatty AcidsWorkacid stressantimicrobialbacterial geneticsbiological adaptation to stresscolonization resistancecommensal microbesdysbiosisenteric infectionenteric pathogengastrointestinalgastrointestinal infectiongut colonizationgut homeostasishigh riskimprovedin vivoinnovationintestinal epitheliummetabolomicsmicrobialmicrobial communitymicrobiomemicrobiotamicroorganismmouse modelnovel therapeutic interventionpH Homeostasispathogenpreventprograms
项目摘要
PROJECT SUMMARY
The microbiota is a critical frontline barrier that protects the host from invading microorganisms and keeps
resident opportunists in check. Frank pathogens such as Salmonella enterica serovar Typhimurium (STm),
however, are adept at overcoming microbiota-mediated colonization resistance to cause dysbiosis and disease.
Under homeostasis, antimicrobial short-chain fatty acids (SCFAs) produced by the microbiota protect the host
by restricting pathogen replication through cytosol acidification. During infection, STm uses its type III secretion
systems (T3SS) to trigger an inflammatory response that depletes SCFA-producing commensals. Current
paradigm holds that the depletion of SCFA-producing species is a pre-requisite for luminal STm expansion.
However, using an antibiotic-naïve mouse model we have observed that STm blooms 1000-fold 3-4 days prior
to the onset of overt inflammation when SCFAs are abundant and the community composition of the microbiota
is undisturbed. This implies that STm employs an as-of-yet undescribed strategy to restore pH homeostasis and
grow in the presence of SCFAs during gastrointestinal colonization. Our preliminary findings suggest that proton-
consuming metabolic pathways, including the amino acid decarboxylases CadA and SpeF, alleviate SCFA
growth inhibition in vitro and are required for full virulence in vivo, yet it is unclear whether these pathways
specifically mediate growth in the presence of SCFAs within the host, or how STm secures the metabolites that
fuel these pathways in the nutrient-restricted gastrointestinal environment. I hypothesize that during colonization
of the gastrointestinal tract, STm uses its T3SS to obtain host-derived amino acids that fuel proton-consuming
reactions and restore pH homeostasis in the presence of commensal-produced SCFAs.
The objective of this application is to elucidate how STm adapts to the intestinal environment and to use
this understanding to develop my own independent research program that investigates how enteric pathogens
overcome intrinsic protective barriers so that we may uncover new therapeutic approaches for bolstering
colonization resistance in high-risk patients. In AIM1 we will assess the contribution of proton-consuming
metabolic pathways in restoring pH homeostasis and growth in the presence of SCFAs in vitro, and investigate
the role these pathways play in mediating early ecosystem invasion in vivo using conventional and gnotobiotic
animal models. In AIM2 we will use bacterial genetics, murine infection models, and metabolomics to determine
how STm uses its virulence factors to engineer a new gastrointestinal niche that supports dysbiotic
Enterobacteriaceae expansion under homeostatic conditions. This mechanistic approach to microbiota research
will provide causal links between pathogen-mediated environmental remodeling and changes in microbial growth
conditions that cannot be gleaned from solely cataloging bacterial species. Successful completion of this work
will reveal opportunities to enhance innate host defenses by identifying and targeting the metabolic pathways
enteric pathogens use to overcome colonization resistance.
项目概要
微生物群是重要的前线屏障,可保护宿主免受微生物入侵并保持
检查弗兰克病原体,如鼠伤寒沙门氏菌(STm),
然而,它们善于克服微生物介导的定植抗性,从而导致生态失调和疾病。
在体内平衡下,微生物群产生的抗菌短链脂肪酸 (SCFA) 可以保护宿主
在感染过程中,STm 使用其 III 型分泌物来限制病原体复制。
系统(T3SS)触发炎症反应,消耗 SCFA 产生的共生体。
该范式认为,产生 SCFA 的物种的耗尽是管腔 STm 扩张的先决条件。
然而,使用未使用抗生素的小鼠模型,我们观察到 STm 在 3-4 天前繁殖了 1000 倍
当 SCFA 丰富时,明显炎症的发生以及微生物群落的组成
这意味着 STm 采用了一种尚未描述的策略来恢复 pH 稳态并
我们的初步研究结果表明,质子在胃肠道定植期间在 SCFA 存在的情况下生长。
消耗代谢途径,包括氨基酸脱羧酶 CadA 和 SpeF,减轻 SCFA
体外生长抑制,并且是体内完全毒力所必需的,但尚不清楚这些途径是否
在宿主体内存在 SCFA 的情况下特异性介导生长,或者 STm 如何确保代谢物
在营养受限的胃肠道环境中为这些途径提供燃料。
在胃肠道中,STm 使用其 T3SS 获取宿主衍生的氨基酸,为质子消耗提供能量
在共生产生的 SCFA 存在下,反应并恢复 pH 稳态。
本申请的目的是阐明 STm 如何适应肠道环境并使用
基于这种理解,我开发了自己的独立研究计划,调查肠道病原体如何
克服内在的保护障碍,以便我们可以发现新的治疗方法来增强
在 AIM1 中,我们将评估质子消耗的贡献。
体外 SCFA 存在下恢复 pH 稳态和生长的代谢途径,并进行研究
这些途径在使用常规和限生素介导体内早期生态系统入侵中发挥的作用
在 AIM2 中,我们将使用细菌遗传学、小鼠感染模型和代谢组学来确定。
STm 如何利用其毒力因子来设计支持菌群失调的新胃肠道生态位
肠杆菌科在稳态条件下的扩张。这种微生物群研究的机械方法。
将提供病原体介导的环境重塑与微生物生长变化之间的因果关系
仅通过对细菌物种进行编目无法收集到的条件成功完成了这项工作。
将揭示通过识别和靶向代谢途径来增强宿主先天防御的机会
肠道病原体用于克服定植抗性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lauren Christine Radlinski其他文献
Lauren Christine Radlinski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
- 批准号:82370423
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
BRD9通过表观重塑促进支链氨基酸代谢介导TP53突变型胰腺癌化疗耐药的机制研究
- 批准号:82360519
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
- 批准号:82373410
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
(光)电催化硝酸根和有机酸C-N偶联合成氨基酸
- 批准号:22372162
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
- 批准号:
10749672 - 财政年份:2024
- 资助金额:
$ 6.95万 - 项目类别:
Mitochondrial electron transport dysfunction: Dissecting pathomechanisms
线粒体电子传递功能障碍:剖析病理机制
- 批准号:
10679988 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Preclinical Development of a Novel Therapeutic Agent for Idiopathic Pulmonary Fibrosis
特发性肺纤维化新型治疗剂的临床前开发
- 批准号:
10696538 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
- 批准号:
10643012 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Development and Production of Standardized Reference Diets for Zebrafish Research
斑马鱼研究标准化参考饲料的开发和生产
- 批准号:
10823702 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别: