Novel Carbon Nanozyme Mechanisms for Traumatic Brain Injury
治疗创伤性脑损伤的新型碳纳米酶机制
基本信息
- 批准号:10598021
- 负责人:
- 金额:$ 46.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Activated CharcoalAcuteAcute Brain InjuriesAddressAgingAntioxidantsBinding SitesBlood - brain barrier anatomyBrain InjuriesCarbonCarbon nanoparticleCell AgingCellsCharacteristicsChelating AgentsChemicalsChronic DiseaseClinicCoalComplexContusionsDNA DamageDNA Double Strand BreakDeferoxamineDiseaseElectron TransportEnvironmentEnzymesEthylenesEventFree RadicalsFundingGenerationsGenomicsGlycolsGoalsGood Manufacturing ProcessHeminHemoglobinHemorrhageHumanImpaired cognitionIn VitroInflammationInjuryIronIron ChelationLearningLesionLinkMaterials TestingMediatorMitochondriaModelingNatureNervous System PhysiologyNeuronsNuclear AccidentsOutcomeOxidation-ReductionOxidative PhosphorylationPathologicPathologyPathway interactionsPatientsPharmaceutical PreparationsPhenotypeQuantum DotsQuinonesResistanceRodentRoleSiteSourceSpeedSuperoxide DismutaseTestingTherapeuticTherapeutic UsesTissuesToxic effectTraumatic Brain InjuryWorkcarboxylatecarboxylationcovalent bonddesigndisabilityfunctional declinefunctional outcomesfunctional restorationgraphenehydrophilicityimprovedin vivoin vivo Modellead candidatemild traumatic brain injurymimeticsmitochondrial dysfunctionnanomaterialsnanoparticlenew therapeutic targetnovelnovel therapeuticsoxidative damageparticlepreventresponsesenescence
项目摘要
Abstract: In the prior funding cycle, we successfully obtained a mechanistic understanding of the chemical basis
for the excellent therapeutic actions in mild traumatic brain injury (TBI) of our carbon nanoparticle (CNP) platform,
poly(ethylene)glycol-hydrophilic carbon clusters (PEG-HCCs). We identified new actions that point to profound
new directions for our CNPs. We: 1) discovered that the HCC's broad redox potential extended their action as
a redox mediator among mitochondrial constituents involved in electron transport, i.e. a nanoparticle enzyme, or
“nanozyme”, and 2) identified a new mechanism by which hemorrhage causes cellular toxicity: rapid and
persistent generation of DNA double strand breaks and robust DNA damage response leading to cellular
“senescence”, in which cells become a nidus for inflammation. While senescence could be prevented by PEG-
HCCs, the cells became sensitized to iron toxicity/ferroptosis. This interaction led us to generate a new CNP,
covalently bonding iron chelator, deferoxamine (DEF). Our results indicate DEF-HCC-PEG effectively
addressed hemin and iron-related injury, senescence and ferroptosis. Given that mitochondrial dysfunction and
hemorrhagic contusion (HC) are associated with poor outcome in TBI, these findings directly indicate the benefit
of pursuing these mechanisms. The identification of key mechanistic features of our CNP platform that facilitate
a mitochondrial site of action and new mechanism of hemorrhage-induced pathology form the basis for this
renewal application. We will incorporate our understanding of the PEG-HCC mechanisms of action to generate
a more immediately translatable CNP utilizing a good manufacturing practice (GMP) starting material, activated
charcoal, and test them in-vivo in a rodent TBI with hemorrhagic contusion (TBI/HC). Our overall hypothesis
is that the mechanisms of action discovered in our prior application will be translatable to GMP starting materials
and will act on both the genomic and mitochondrial damage associated with TBI/HC. Specific Aim 1 will test the
hypothesis that an oxidizing synthesis environment can be optimized to generate GMP-derived starting
materials, PEG-oxidized activated charcoal achieving, the desired characteristics of a CNP nanozyme. Specific
Aim 2 will test the hypothesis that DEF-linked CNP will address hemorrhage-related mitochondrial and genomic
events triggering senescence and resistance to ferroptosis. Specific Aim 3 will administer the CNPs developed
in Aims 1 and 2 to moderate-severe TBI/HC model. Completion of these Aims will yield a more readily
translatable version of our CNP platform building on a growing understanding of the critical features and sites of
action for their nanozyme mechanisms. New therapeutic targets emerging from a more thorough understanding
of pathological mechanisms by which hemorrhage complicates outcome from TBI will guide the design. By
employing GMP starting material, this project can generate breakthrough materials more rapidly translatable to
the clinic. Because mitochondrial dysfunction and the cellular consequence of hemorrhage are features both of
acute injury and of aging and cognitive decline, a broader potential for this therapy is suggested.
摘要:在先前的资金周期中,我们成功获得了对化学基础的机械理解
对于我们碳纳米颗粒(CNP)平台轻度创伤性脑损伤(TBI)的出色治疗作用,
聚(乙烯)甘油 - 综合碳簇(PEG-HCC)。
我们的CNP的新方向。
涉及电子传输的米氏征服中的氧化还原介体,即纳米颗粒酶
“纳米酶”,2)确定了一种新机制,通过该机制引起细胞毒性:快速和
DNA双链断裂的持续产生和强大的DNA损伤响应导致细胞
“衰老”,其中细胞成为侵蚀的nidus。
HCC,细胞对铁毒/铁肉芽毒素的敏感。
共价粘合铁螯合剂,脱氧胺(DEF)。
解决了hemin和与铁相关的损伤,衰老和铁毒性造成病。
出血挫伤(HC)与TBI的结果不佳有关,这些发现直接起诉了益处
追求这些机制。
线粒体的作用部位和出血诱导的病理学的新机制构成了这一点的基础。
续签应用。
使用良好的制造实践(GMP)的起始材料,更适当地翻译的CNP,激活
木炭和带有出血性挫伤的啮齿动物TBI中的木炭(TBI/HC)
是在我们先前的应用中发现的动作机制将被转换为GMP的起始产业
并将对与TBI/HC相关的基因组和线粒体损伤作用。
假设可以优化氧化合成环境以产生GMP衍生的启动
材料,PEG氧化活化的木炭实现,是CNP纳米酶的所需特征。
AIM 2将检验以下假设:DEF连锁的CNP将解决与出血有关的线粒体和基因组
触发衰老和抗铁毒性的事件。
在AIM 1和2中至中度分数TBI/HC模型。
我们的CNP平台的可翻译版本构建了人们对关键特征和位置的越来越多的理解
纳米机制的作用。
出血使TBI结果复杂化的病理机制将指导设计。
该项目采用GMP起始材料,可以更快地翻译成突破性的材料
诊所。
急性损伤以及衰老和认知能力下降,这是更广泛的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Muralidhar L Hegde其他文献
Muralidhar L Hegde的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Muralidhar L Hegde', 18)}}的其他基金
Defining the altered FUS-PARP-1-DNA Ligase III axis and its implications to nuclear and mitochondrial genome damage response in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD)
定义改变的 FUS-PARP-1-DNA 连接酶 III 轴及其对肌萎缩侧索硬化症 (ALS) 和额颞叶痴呆 (FTD) 中核和线粒体基因组损伤反应的影响
- 批准号:
9980670 - 财政年份:2020
- 资助金额:
$ 46.1万 - 项目类别:
Novel Carbon Nanozyme Mechanisms for Traumatic Brain Injury
治疗创伤性脑损伤的新型碳纳米酶机制
- 批准号:
9981393 - 财政年份:2015
- 资助金额:
$ 46.1万 - 项目类别:
Novel Carbon Nanozyme Mechanisms for Traumatic Brain Injury
治疗创伤性脑损伤的新型碳纳米酶机制
- 批准号:
10397400 - 财政年份:2015
- 资助金额:
$ 46.1万 - 项目类别:
相似国自然基金
通过调控颈淋巴结引流促进急性颅脑损伤后神经修复与再生——基于脑-颈淋巴结通路概念的功能与机制研究
- 批准号:82311530117
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:国际(地区)合作与交流项目
应用人工智能深度学习技术构建轻中度颅脑损伤急性期颅内血肿进展预判体系的研究
- 批准号:82171381
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
Netrin-1抑制急性缺血性脑损伤中小胶质细胞介导的炎症反应的作用及机制
- 批准号:82171286
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
基于小胶质细胞HMGB1/TLR4/NF-κB信号通路探讨针刺在急性一氧化碳中毒脑损伤中的抗炎机制
- 批准号:
- 批准年份:2020
- 资助金额:34 万元
- 项目类别:地区科学基金项目
己糖激酶2通过蛋白激酶活性调节星形胶质细胞外泌体生成参与急性缺血性脑损伤
- 批准号:82071321
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Poly-Matching Causal Inference for Assessing Multiple Acute Medical Managements of Pediatric Traumatic Brain Injuries
用于评估小儿创伤性脑损伤的多种急性医疗治疗的多重匹配因果推理
- 批准号:
10586785 - 财政年份:2023
- 资助金额:
$ 46.1万 - 项目类别:
Pterygopalatine Fossa (PPF) Block as an Opioid Sparing Treatment for AcuteHeadache in Aneurysmal Subarachnold Hemorrhage
翼腭窝 (PPF) 阻滞作为阿片类药物节省治疗动脉瘤性蛛网膜下腔出血的急性头痛
- 批准号:
10584712 - 财政年份:2023
- 资助金额:
$ 46.1万 - 项目类别:
Monocyte-Derived Microglia in Development and after Neonatal Brain Injury
发育中和新生儿脑损伤后的单核细胞衍生的小胶质细胞
- 批准号:
10593385 - 财政年份:2023
- 资助金额:
$ 46.1万 - 项目类别:
Drug repurposing for Alzheimer’s disease-related inflammation caused by a TBI
药物再利用,治疗 TBI 引起的阿尔茨海默病相关炎症
- 批准号:
10590132 - 财政年份:2023
- 资助金额:
$ 46.1万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 46.1万 - 项目类别: