Functional mapping of noncoding regulatory variants in human neuronal subtypes

人类神经元亚型非编码调控变异的功能图谱

基本信息

  • 批准号:
    10593976
  • 负责人:
  • 金额:
    $ 68.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-18 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

Complex neuropsychiatric disorders, including schizophrenia and autism spectrum disorder (ASD) among others, impose an enormous socioeconomic burden on families and on society. The pathobiological mechanisms are largely unknown, and treatment options are limited and often incompletely effective. During the past decade, advances in human genetics and next-generation sequencing, coupled with expanding cohort sizes, have permitted the identification of thousands of genetic variants that influence risk for neuropsychiatric diseases. Each disease-associated variants identified by genome-wide association studies (GWAS) could provide insights into a biological mechanism that underlies the risk of disease in humans. However, the availability of data is not synonymous with the presence of meaning. The challenge researchers are facing now is the derivation of biological meaning post-GWAS. Particularly, more than 90% of the risk variants are found in the non-coding regions of the human genome. Although the potential contribution of non-coding variants to complex human diseases has long been speculated, it has been a major challenge to develop testable hypotheses to decipher their role in disease etiology. Here, we propose to develop innovative multidisciplinary approaches to bridge the gap between human genetics and experimental biology. The major hypothesis underlying the approach is that epigenetic changes caused by non-coding variation in the cis-regulatory elements, particularly enhancers that are platforms for sequence-specific transcription factor binding and can influence gene transcription over long distance, may confer disease liability by disrupting gene expression. We aim to (i) annotate functionally distinct enhancers in disease-relevant human neuronal subtypes generated by reprogramming of pluripotent stem cells, (ii) apply the cutting-edge HiChIP technology to profile the promoter-enhancer interactions in neurons in resting and active states, and identify the target genes of enhancers, finally, (iii) we will determine how disease- associated variants affect enhancer activity in human neurons. Such effort will provide the foundation to map and prioritize non-coding risk variants for future mechanistic studies. Especially, the enhancer-interactome analysis performed in this study will provide a physical-interaction-based approach for the identification of enhancer target genes in neurons. The information will lay the groundwork for developing testable hypotheses to elucidate the molecular impact of risk variants in non-coding regions. Last but not least, determining how non- coding risk variants disrupt activity-regulated gene expression in neuronal subtypes may uncover novel disease- relevant biology not observed using the incomplete existing methodologies and resources (activity-responsive enhancers are not possible to identify from post-mortem tissue). Once accomplished, the proposed work will have broad impact on translating genetic discoveries into actionable biological hypotheses that can potentially power a new round of development of novel therapeutics strategies for complex neuropsychiatric disorders.
复杂的神经精神疾病,包括精神分裂症和自闭症谱系障碍(ASD)等, 给家庭和社会带来巨大的社会经济负担。其病理生物学机制是 很大程度上未知,治疗选择有限且往往不完全有效。在过去的十年里, 人类遗传学和下一代测序的进步,加上队列规模的扩大,已经 允许识别数千种影响神经精神疾病风险的遗传变异。 全基因组关联研究 (GWAS) 发现的每种疾病相关变异都可以提供见解 探究人类疾病风险背后的生物机制。然而,数据的可用性并不 与意义的存在同义。研究人员现在面临的挑战是推导 GWAS 后的生物学意义。特别是,90%以上的风险变异都存在于非编码环境中。 人类基因组的区域。尽管非编码变异对复杂人类的潜在贡献 疾病长期以来一直被推测,发展可检验的假设来破译一直是一个重大挑战 它们在疾病病因学中的作用。在这里,我们建议开发创新的多学科方法来弥合 人类遗传学和实验生物学之间的差距。该方法的主要假设是 由顺式调控元件的非编码变异引起的表观遗传变化,特别是增强子 是序列特异性转录因子结合的平台,可以长期影响基因转录 距离,可能会通过破坏基因表达而导致疾病发生。我们的目标是 (i) 注释功能上不同的 通过多能干细胞重编程产生的疾病相关人类神经元亚型的增强子, (ii) 应用尖端的 HiChIP 技术来分析静息神经元中启动子-增强子的相互作用 和活性状态,并确定增强子的目标基因,最后,(iii)我们将确定疾病如何- 相关变异影响人类神经元的增强子活性。这些努力将为绘制地图奠定基础 并优先考虑非编码风险变异以供未来的机制研究。特别是增强子相互作用组 本研究中进行的分析将提供一种基于物理交互的方法来识别 神经元中的增强子靶基因。这些信息将为开发可检验的假设奠定基础 阐明非编码区风险变异的分子影响。最后但并非最不重要的一点是,确定如何非 编码风险变异破坏神经元亚型中活动调节的基因表达可能会发现新的疾病 使用不完整的现有方法和资源(活动响应 不可能从死后组织中识别出增强子)。一旦完成,拟议的工作将 对于将遗传发现转化为可操作的生物学假设具有广泛的影响,这些假设有可能 推动新一轮复杂神经精神疾病新型治疗策略的开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nan Yang其他文献

Nan Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nan Yang', 18)}}的其他基金

Functional mapping of noncoding regulatory variants in human neuronal subtypes
人类神经元亚型非编码调控变异的功能图谱
  • 批准号:
    10416448
  • 财政年份:
    2022
  • 资助金额:
    $ 68.27万
  • 项目类别:
Cellular and molecular mechanisms of brain dysfunction in NF1
NF1脑功能障碍的细胞和分子机制
  • 批准号:
    10347337
  • 财政年份:
    2020
  • 资助金额:
    $ 68.27万
  • 项目类别:
Cellular and Molecular Mechanisms of Brain Dysfunction in NF1
NF1 脑功能障碍的细胞和分子机制
  • 批准号:
    10577861
  • 财政年份:
    2020
  • 资助金额:
    $ 68.27万
  • 项目类别:
Determining neuroprotective autophagy functions using different types of human neurons
使用不同类型的人类神经元确定神经保护自噬功能
  • 批准号:
    9974891
  • 财政年份:
    2020
  • 资助金额:
    $ 68.27万
  • 项目类别:
Generation and characterization of MGE-derived GABAergic neurons from human pluripotent stem cells
人多能干细胞 MGE 衍生的 GABA 能神经元的生成和表征
  • 批准号:
    9902548
  • 财政年份:
    2019
  • 资助金额:
    $ 68.27万
  • 项目类别:

相似国自然基金

等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
  • 批准号:
    32370714
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
  • 批准号:
    82300353
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
  • 批准号:
    82302575
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
  • 批准号:
    32302535
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
  • 批准号:
    10645610
  • 财政年份:
    2023
  • 资助金额:
    $ 68.27万
  • 项目类别:
Axonal Varicosity Dynamics in Central Neuron Mechanosensation and Injury
中枢神经元机械感觉和损伤中的轴突静脉曲张动力学
  • 批准号:
    10905596
  • 财政年份:
    2023
  • 资助金额:
    $ 68.27万
  • 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
  • 批准号:
    10659303
  • 财政年份:
    2023
  • 资助金额:
    $ 68.27万
  • 项目类别:
RLIP, Mitochondrial Dysfunction in Alzheimer’s Disease
RLIP,阿尔茨海默病中的线粒体功能障碍
  • 批准号:
    10901025
  • 财政年份:
    2023
  • 资助金额:
    $ 68.27万
  • 项目类别:
Investigating the role of TMEM106b genetics and pathology in Alzheimer’s disease, LATE and FTLD
研究 TMEM106b 遗传学和病理学在阿尔茨海默病、LATE 和 FTLD 中的作用
  • 批准号:
    10806465
  • 财政年份:
    2023
  • 资助金额:
    $ 68.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了