Protein modification and the aging phenotype of human skeletal muscle
蛋白质修饰与人类骨骼肌的衰老表型
基本信息
- 批准号:10593791
- 负责人:
- 金额:$ 18.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:ActinsAcuteAddressAdultAgeAgingAreaAtrophicBindingBiologyCardiacCell RespirationCharacteristicsClinicalCouplingCyclic AMP-Dependent Protein KinasesDataDependenceElderlyExhibitsFailureFatigueFiberFunctional disorderGoalsHeartHeart failureHumanImpairmentIn VitroInterventionIsometric ContractionIsometric ExerciseKineticsLeadLifeLongevityMediatingModificationMolecularMolecular TargetMuscleMuscle CellsMuscle FibersMuscle TensionMuscle functionMuscular AtrophyMyocardialMyosin ATPaseMyosin Regulatory Light ChainsOutcomePerformancePhenotypePhosphorylationPhysical FunctionPhysical RehabilitationPost-Translational Protein ProcessingProtein DephosphorylationProtein IsoformsProteinsRehabilitation OutcomeReportingResearchResistanceRiskRoleSarcomeresSequence HomologySkeletal MuscleTestingThick FilamentThin FilamentTissue SampleTissuesTranslatingWalkingage relateddisabilityexperienceexperimental studyfall riskfrailtygenetic regulatory proteinimprovedin vivointerestmuscle agingmuscle formmyosin-binding protein Cnovelphysically handicappedpre-clinicalpreclinical studysarcopeniascreeningskeletalskeletal muscle wastingyoung adult
项目摘要
Project Summary
Age-related reductions in muscle contractile performance are mediated by reductions in muscle size (atrophy)
and alterations in actin-myosin cross bridge function that are independent of size. Together, they contribute to
sarcopenia, the age-related loss of skeletal muscle mass and function. A hallmark of sarcopenia is the loss of
contractile power (= product of force and velocity) which, in turn, predicts physical dysfunction, and mobility
disability. Importantly, contractile power declines earlier in life and more precipitously than reductions in
contractile force or muscle size, thereby suggesting that power is subject to the influence of unique
mechanisms. During repeated contractions of high velocity, muscle fatigability is also increased with age, such
that older, healthy adults experience a much greater reduction in muscular power over the course of a
single bout of repeated voluntary contractions. In combination, these aspects of muscle aging leave older
adults at greater risk of falls and physical impairments during repetitious activities (stair climbing, walking etc.).
Somewhat paradoxically, muscle tension (force per unit cross sectional area) has been shown to increase
with age when contractile velocity is zero (isometric). Similarly, older adults are less fatigable during
isometric contractions. This constellation of poorly understood functional characteristics defines an Aging
Phenotype of skeletal muscle whose mechanisms may reveal important targets for intervention for improving
physical function in older adults with sarcopenia. We propose that alterations in cross-bridge level biology in
the aging sarcomere contribute to velocity-dependent contractile dysfunction and will perform experiments in
human skeletal muscle to test the hypothesis that the sarcomeric protein Myosin Binding Protein C (MyBP-C)
is central to this phenomenon.
MyBP-C is a regulatory protein located near the center of the sarcomere, known to modulate myocardial
contractility via phosphorylation-dependent interactions with the thin and thick filaments. While skeletal and
cardiac isoforms of MyBP-C are highly conserved and share structural and sequence homology, it is not clear
whether MyBP-C has similar phosphorylation-dependent influences on skeletal muscle contractility. Recent
pre-clinical studies suggest skeletal MyBP-C phosphorylation influences contractile force and velocity, and age
and fatiguing contractions alter phosphorylation differentially. Our studies in isolated human single muscle
fibers will translate pre-clinical evidence to humans and allow us to interrogate the influence of MyBP-C on age
and fatigue-related changes in skeletal muscle contractility. We will identify post translational modifications to
sarcomeric proteins with age and fatigue while screening for other candidates of interest within the human
muscle cell. These studies will reveal important information regarding the poorly understood Aging Phenotype
of Skeletal Muscle while establishing foundational data supporting the pursuit of molecular targets for
interventions with the goal of improving clinical outcomes in older adults.
项目概要
与年龄相关的肌肉收缩性能下降是由肌肉尺寸减小(萎缩)介导的
肌动蛋白-肌球蛋白跨桥功能的改变与大小无关。他们共同致力于
肌肉减少症,与年龄相关的骨骼肌质量和功能丧失。肌肉减少症的一个标志是丧失
收缩力(=力和速度的乘积),进而预测身体功能障碍和活动能力
残疾。重要的是,收缩力在生命早期就会下降,而且比收缩力的下降更急剧。
收缩力或肌肉大小,从而表明力量受到独特的影响
机制。在重复高速收缩过程中,肌肉疲劳性也会随着年龄的增长而增加,例如
年龄较大、健康的成年人在一段时间内肌肉力量会大幅下降
单次重复的自主收缩。综合起来,肌肉老化的这些方面会使人变老
在重复性活动(爬楼梯、步行等)中跌倒和身体损伤风险较高的成年人。
有点矛盾的是,肌肉张力(每单位横截面积的力)已被证明会增加
随着年龄的增长,收缩速度为零(等长)。同样,老年人在工作期间也不易疲劳。
等长收缩。这一系列人们知之甚少的功能特征定义了老化
骨骼肌表型的机制可能揭示改善干预的重要目标
患有肌肉减少症的老年人的身体功能。我们建议跨桥水平生物学的改变
老化的肌节会导致速度依赖性收缩功能障碍,并将在以下方面进行实验
人类骨骼肌来检验肌节蛋白肌球蛋白结合蛋白 C (MyBP-C) 的假设
是这一现象的核心。
MyBP-C 是一种位于肌节中心附近的调节蛋白,已知可调节心肌
通过与细丝和粗丝的磷酸化依赖性相互作用来产生收缩性。虽然骨骼和
MyBP-C 的心脏亚型高度保守,具有结构和序列同源性,目前尚不清楚
MyBP-C 是否对骨骼肌收缩力具有类似的磷酸化依赖性影响。最近的
临床前研究表明骨骼 MyBP-C 磷酸化影响收缩力和速度以及年龄
疲劳收缩会不同程度地改变磷酸化。我们对离体人体单块肌肉的研究
纤维将把临床前证据转化为人类,并使我们能够探究 MyBP-C 对年龄的影响
以及与疲劳相关的骨骼肌收缩力变化。我们将确定翻译后修改
肌节蛋白随年龄和疲劳的变化,同时筛选人体中其他感兴趣的候选者
肌肉细胞。这些研究将揭示有关人们知之甚少的衰老表型的重要信息
骨骼肌的研究,同时建立支持追求分子目标的基础数据
旨在改善老年人临床结果的干预措施。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting myosin heavy chain isoform from postdissection fiber length in human skeletal muscle fibers.
根据人体骨骼肌纤维的解剖后纤维长度预测肌球蛋白重链亚型。
- DOI:10.1152/ajpcell.00700.2023
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Privett,GraceE;Ricci,AustinW;Ortiz-Delatorre,Julissa;Callahan,DamienM
- 通讯作者:Callahan,DamienM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Damien Mark Callahan其他文献
Damien Mark Callahan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 18.49万 - 项目类别:
microRNA-Regulated Mechanisms Essential for Structural Plasticity of Drosophila Glutamatergic Synapses
microRNA 调控机制对于果蝇谷氨酸突触的结构可塑性至关重要
- 批准号:
10792326 - 财政年份:2023
- 资助金额:
$ 18.49万 - 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 18.49万 - 项目类别:
Chlamydia type III effectors affecting the host actin-based cytoskeleton
III 型衣原体效应子影响宿主肌动蛋白细胞骨架
- 批准号:
10632935 - 财政年份:2023
- 资助金额:
$ 18.49万 - 项目类别:
Elucidating the role of Myosin 5b in intestinal inflammation
阐明肌球蛋白 5b 在肠道炎症中的作用
- 批准号:
10883872 - 财政年份:2023
- 资助金额:
$ 18.49万 - 项目类别: