Spinal Effects of Cortical Stimulation: Mechanisms and Functional Impact
皮质刺激的脊髓效应:机制和功能影响
基本信息
- 批准号:10237412
- 负责人:
- 金额:$ 74.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnatomyAreaAttentionBrainCellsCentral Nervous System DiseasesCerebral PalsyChronicContralateralCorticospinal TractsDataDevelopmentDistantElectrodesExperimental ModelsFrequenciesGABA ReceptorGene ActivationGene ExpressionGenetic TranscriptionGlutamatesGoalsH-ReflexHumanImplantInterneuronsIpsilateralLesionLifeLong-Term DepressionLong-Term EffectsLong-Term PotentiationMeasuresMethodsMolecularMolecular BiologyMonitorMotor CortexMotor NeuronsMuscleNatureNeuromuscular DiseasesNeuronsPathway interactionsPatternPhysiologicalPhysiologyPropertyProtocols documentationRattusRecoveryRecovery of FunctionRoleShapesSoleus MuscleSpinalSpinal CordSpinal Cord PlasticitySpinal cord injuryStrokeStructureSynapsesTestingTraumatic CNS injuryanaloganatomical tracingbaseexpectationgamma-Aminobutyric Acidinsightnext generation sequencingnovel therapeuticspreventreceptorspinal reflexstretch reflextranscriptome sequencing
项目摘要
Project Summary/Abstract
Because activity-dependent plasticity is ubiquitous in the CNS, brain stimulation may have long-term effects on
areas to which the stimulated area connects. These effects have received little attention. Nevertheless, recent
appreciation of the long-term role of cortex in shaping spinal cord pathways suggests that the long-term spinal
effects of cortical stimulation are likely to be substantial. In fact, weak electrical cortical stimulation (ECS) of
rat sensorimotor cortex has lasting spinal effects. Three months after ECS ends, GABA receptors in spinal
motoneurons remain decreased and the H-reflex (analog of the spinal stretch reflex) remains increased.
This proposal seeks to determine in rats how ECS produces these spinal effects and to characterize the
effects on physiological, anatomical, and molecular levels. Preliminary studies support the hypothesis that the
spinal effects occur because ECS excites corticospinal tract (CST) neurons that synapse on spinal GABAergic
interneurons that synapse on soleus motoneurons, that this input reduces GABA metabotropic receptors and
thereby modifies motoneuron properties so as to increase the H-reflex (and also affect other spinal circuits), and
that specific gene activations underlie these effects. Two specific aims test this hypothesis.
The first aim is to determine how ECS parameters affect its impact on the spinal cord and to define the
responsible descending pathway. ECS will be given by epidural electrodes. Pathway lesions and anatomical
tracers will identify the key pathway and its spinal targets. Based on initial data and other studies, the expectation
is that the CST is the essential pathway and that it connects to spinal motoneurons via GABAergic interneurons.
The second aim is to characterize the short-term and long-term effects of ECS on spinal neurons and circuits
on physiological, anatomical, and transcriptional levels. These studies will: examine ECS impact on motoneuron
properties (e.g., firing threshold) and on spinal reflex pathways; explore immunohistochemically ECS impact on
GABAergic and other (e.g., glutamatergic) spinal interneurons and synapses and their receptors in soleus and
other spinal motoneurons; use next-generation sequencing methods (RNA-Seq) to identify ECS-induced changes
in gene expression in spinal motoneurons that correlate with and are likely to account for the changes in neuronal
properties, spinal circuit function, and immunohistochemical measures.
In summary, this proposal uses a well-defined experimental model to explore the spinal effects of cortical
stimulation. By characterizing the nature and mechanisms of the spinal cord plasticity produced by this stimulation,
it should provide fundamental new insight into the wider effects of cortical stimulation, and also into how the
cortex modifies the spinal cord throughout life. Furthermore, the results should guide development of stimulation
protocols to further explore these effects, and stimulation protocols that can induce beneficial plasticity to enhance
functional recovery after CNS trauma or disease.
项目概要/摘要
由于活动依赖性可塑性在中枢神经系统中普遍存在,因此大脑刺激可能会对神经系统产生长期影响。
然而,最近这些影响很少受到关注。
对皮质在塑造脊髓通路中的长期作用的认识表明,长期脊髓
事实上,弱电皮层刺激(ECS)的效果可能是显着的。
ECS 结束后三个月,大鼠感觉运动皮层的 GABA 受体对脊髓产生持久的影响。
运动神经元仍然减少,H 反射(类似于脊髓牵张反射)仍然增加。
该提案旨在确定 ECS 如何在大鼠中产生这些脊柱效应,并表征
对生理、解剖和分子水平的影响。
脊髓效应的发生是因为 ECS 刺激了脊髓 GABA 能突触的皮质脊髓束 (CST) 神经元
与比目鱼肌运动神经元突触的中间神经元,这种输入减少了 GABA 代谢受体,
改变运动神经元特性,从而增强 H 反射(并影响其他脊髓回路),并且
特定的基因激活是这些效应的基础。两个特定的目标检验了这一假设。
第一个目标是确定 ECS 参数如何影响其对脊髓的影响并定义
负责的下行通路将由硬膜外电极给出。
示踪剂将根据初步数据和其他研究确定关键通路及其脊柱目标。
CST 是重要的通路,它通过 GABA 能中间神经元连接到脊髓运动神经元。
第二个目标是描述 ECS 对脊髓神经元和回路的短期和长期影响
这些研究将:检查 ECS 对运动神经元的影响。
特性(例如放电阈值)和脊髓反射通路;探讨 ECS 对免疫组织化学的影响;
GABA能和其他(例如谷氨酸能)脊髓中间神经元和突触及其在比目鱼肌和
其他脊髓运动神经元;使用下一代测序方法 (RNA-Seq) 来识别 ECS 引起的变化
脊髓运动神经元的基因表达与神经元的变化相关并可能解释
特性、脊髓回路功能和免疫组织化学测量。
总之,该提案使用明确的实验模型来探索皮质对脊柱的影响
通过表征这种刺激产生的脊髓可塑性的性质和机制,
它应该提供关于皮质刺激的更广泛影响的基本新见解,以及如何
皮层在整个生命过程中都会改变脊髓此外,结果应该指导刺激的发展。
进一步探索这些影响的方案,以及可以诱导有益可塑性以增强的刺激方案
中枢神经系统创伤或疾病后的功能恢复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Saul Carp其他文献
Jonathan Saul Carp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Saul Carp', 18)}}的其他基金
Spinal Effects of Cortical Stimulation: Mechanisms and Functional Impact
皮质刺激的脊髓效应:机制和功能影响
- 批准号:
10470019 - 财政年份:2019
- 资助金额:
$ 74.77万 - 项目类别:
Spinal Effects of Cortical Stimulation: Mechanisms and Functional Impact
皮质刺激的脊髓效应:机制和功能影响
- 批准号:
10666526 - 财政年份:2019
- 资助金额:
$ 74.77万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 74.77万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 74.77万 - 项目类别:
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
- 批准号:
10734258 - 财政年份:2023
- 资助金额:
$ 74.77万 - 项目类别:
Thalamo-prefrontal circuit maturation during adolescence
丘脑-前额叶回路在青春期成熟
- 批准号:
10585031 - 财政年份:2023
- 资助金额:
$ 74.77万 - 项目类别:
The non-invasive early detection of endometriosis
子宫内膜异位症的非侵入性早期检测
- 批准号:
10574971 - 财政年份:2023
- 资助金额:
$ 74.77万 - 项目类别: