Deep clinical trajectory modeling to optimize accrual to cancer clinical trials
深度临床轨迹建模可优化癌症临床试验的应计结果
基本信息
- 批准号:10561692
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAdultCancer ModelCancer PatientClassificationClinicalClinical DataClinical MedicineClinical TrialsComplexComputersDana-Farber Cancer InstituteDataData ScienceData ScientistDevelopmentDiagnosisDiseaseElectronic Health RecordEligibility DeterminationEnrollmentGoalsGovernmentHealth Services ResearchHealth systemHealthcare SystemsHistologyIndustryInstitutionInterventionLabelLinkMachine LearningMalignant NeoplasmsManualsMedical RecordsMethodsModelingNatural Language ProcessingOncologistOncologyOutcomePathology ReportPatientsPhenotypePrimary NeoplasmRadiology SpecialtyRandomizedReportingResearchResearch PersonnelResourcesServicesSiteSourceStructureSystemic TherapyTechniquesTechnologyTextTherapeutic TrialsTimeTrainingWorkanticancer researchburden of illnesscancer carecancer clinical trialcare deliverycareerclinical candidateclinical practiceclinical trainingclinical trial enrollmentclinical trial protocolclinically relevantcohortdata registrydeep learningdesignelectronic health datagenomic dataimprovedinnovationlearning strategymachine learning modelmultiple data typesneoplasm registryneural network architecturenovelpalliativepatient populationprecision medicine clinical trialspreventprogramsresponseskillsstructured datasurvival predictiontooltransfer learningtrial readinesstumor progressionunstructured data
项目摘要
PROJECT SUMMARY/ABSTRACT
Electronic health records (EHRs) are now ubiquitous in routine cancer care delivery. The large volumes of data
that EHRs contain could constitute an important resource for research and quality improvement, but to date,
EHRs have not fully realized this potential. Important clinical endpoints, such as disease histology, stage,
response, progression, and burden, are often recorded in the EHR only in unstructured free-text form. Even
when structured data are available, they may be recorded only at one point in time, such as diagnosis, and
may not be as relevant later in a patient's dynamic disease trajectory. These barriers prevent scalable analysis
of EHR data for even relatively straightforward research tasks, such as identification of a cohort of patients
potentially eligible for clinical trials. Identifying patients for trials is an important challenge in cancer research,
since under 5% of adults with cancer have historically enrolled in therapeutic trials. Tools are in development to
better match patients to trials, but no such tools are both publicly available and capable of incorporating time-
specific patient phenotypes generated using unstructured EHR data. Recent rapid innovation in deep learning
techniques could provide novel solutions to these challenges. In ongoing work, I have found that natural
language processing based on a neural network architecture can reliably extract clinically relevant oncologic
endpoints from free-text radiology reports. My goal is to develop an independent research program focused on
leveraging such methods to put the EHR to use at scale for discovery and improving cancer care delivery. My
specific aims are (1) to develop and validate a clinically relevant, dynamic, pre-trained cancer trajectory model
by applying deep learning to integrated structured and unstructured EHR data; (2) to apply transfer learning to
a pre-trained cancer trajectory model to match patients to clinical trials using EHR data and clinical trial
protocols; and (3) to pilot the incorporation of cancer trajectory modeling into an institutional clinical trial
matching tool. In the near term, this work will facilitate accrual to clinical trials at our institution. During the
independent research portion of the proposal, it will constitute the basis for a general framework for conducting
scalable cancer research using EHR data.
项目概要/摘要
电子健康记录 (EHR) 现在在常规癌症护理服务中无处不在。海量数据
电子病历所包含的内容可能构成研究和质量改进的重要资源,但迄今为止,
电子病历尚未完全实现这一潜力。重要的临床终点,例如疾病组织学、分期、
反应、进展和负担通常仅以非结构化自由文本形式记录在 EHR 中。甚至
当结构化数据可用时,它们可能仅在某一时间点记录,例如诊断,以及
以后在患者的动态疾病轨迹中可能不再那么相关。这些障碍阻碍了可扩展的分析
用于相对简单的研究任务的 EHR 数据,例如识别一组患者
可能有资格进行临床试验。确定试验患者是癌症研究中的一个重要挑战,
因为历史上只有不到 5% 的成人癌症患者参加过治疗试验。工具正在开发中
更好地将患者与试验相匹配,但没有这样的工具既是公开可用的,又能够纳入时间-
使用非结构化 EHR 数据生成的特定患者表型。最近深度学习领域的快速创新
技术可以为这些挑战提供新颖的解决方案。在持续的工作中,我发现自然
基于神经网络架构的语言处理可以可靠地提取临床相关的肿瘤学信息
来自自由文本放射学报告的终点。我的目标是开发一个独立的研究项目,重点关注
利用此类方法大规模使用 EHR 来发现和改善癌症护理服务。我的
具体目标是 (1) 开发和验证临床相关的、动态的、预先训练的癌症轨迹模型
将深度学习应用于集成的结构化和非结构化 EHR 数据; (2) 将迁移学习应用于
预先训练的癌症轨迹模型,使用 EHR 数据和临床试验将患者与临床试验相匹配
协议; (3) 试点将癌症轨迹模型纳入机构临床试验
匹配工具。在短期内,这项工作将促进我们机构的临床试验的进展。期间
该提案的独立研究部分,它将构成开展总体框架的基础
使用 EHR 数据进行可扩展的癌症研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth L Kehl其他文献
Regression models for average hazard.
平均风险的回归模型。
- DOI:
10.1093/biomtc/ujae037 - 发表时间:
2024 - 期刊:
- 影响因子:1.9
- 作者:
Hajime Uno;Lu Tian;M. Horiguchi;Satoshi Hattori;Kenneth L Kehl - 通讯作者:
Kenneth L Kehl
Kenneth L Kehl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth L Kehl', 18)}}的其他基金
Deep clinical trajectory modeling to optimize accrual to cancer clinical trials
深度临床轨迹建模可优化癌症临床试验的应计结果
- 批准号:
10547984 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Deep clinical trajectory modeling to optimize accrual to cancer clinical trials
深度临床轨迹建模可优化癌症临床试验的应计结果
- 批准号:
10090579 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
dMRI-guided pre-operative planning for supra-total resection of high-grade gliomas
dMRI引导的高级别胶质瘤超全切除术前规划
- 批准号:
10635099 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Characterization of Naphthalene DNA Adducts in Mice and Firefighters
小鼠和消防员中萘 DNA 加合物的表征
- 批准号:
10462039 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Characterization of Naphthalene DNA Adducts in Mice and Firefighters
小鼠和消防员中萘 DNA 加合物的表征
- 批准号:
10707915 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Mitigating Long-term Cardiotoxicity with Nanoparticle Encapsulated Anthracyclines
用纳米颗粒封装的蒽环类药物减轻长期心脏毒性
- 批准号:
10378678 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Mitigating Long-term Cardiotoxicity with Nanoparticle Encapsulated Anthracyclines
用纳米颗粒封装的蒽环类药物减轻长期心脏毒性
- 批准号:
10195941 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别: