Development of a handheld rapid air sensing system to monitor and quantify SARS-CoV-2 in aerosols in real-time
开发手持式快速空气传感系统,实时监测和量化气溶胶中的 SARS-CoV-2
基本信息
- 批准号:10273983
- 负责人:
- 金额:$ 272.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAddressAerosolsAirApplications GrantsAspirate substanceBenchmarkingBiophotonicsCOVID-19COVID-19 detectionCOVID-19 monitoringCOVID-19 pandemicCOVID-19 patientCell Culture TechniquesCell NucleusCessation of lifeChemicalsCollectionCommunitiesContact TracingCountryDNADataDetectionDevelopmentDevicesDoseDropsEnvironmentEnzyme Inhibitor DrugsEnzymesGoalsGuidelinesHandwashingHealthHospitalsHourHumanIndividualInterdisciplinary StudyInvestigationKnowledgeLaboratoriesLeadLigationLungMasksMeasurementMeasuresMethodsMonitorNasal cavityOnset of illnessPerformancePhotonsPolymerase Chain ReactionPredispositionPreparationProcessProtocols documentationQuarantineRNARNA-Directed DNA PolymeraseReaction TimeReadingReagentReportingResearchResearch ProposalsReverse TranscriptionRiskRisk ManagementRoleSARS-CoV-2 infectionSARS-CoV-2 transmissionSafetySamplingSchoolsSeverity of illnessSignal TransductionSocial DistanceSpeedStandardizationSymptomsSystemTechnologyTestingTimeUncertaintyViralViral Load resultVirusVirus InactivationWorkplaceaerosolizedair monitoringair samplingbasechemical kineticsdesigndetection platformdisease transmissionepidemiology studyfootgenomic RNAhigh riskhuman coronavirusinfection rateinfection riskinnovationinsightknowledge baselaboratory equipmentmonitoring devicenovelparticlephoton-counting detectorportabilitypreventreal time monitoringsensorsolid state electronicstissue culturetooltransmission processviral detection
项目摘要
Project Summary
The ability to rapidly monitor SARS-CoV-2 in aerosol—drop particles <5 μm in size that evaporate into droplet
nuclei and become suspended in air—at the point of presentation is critical to managing the risk of infection by
airborne transmission as people return to their communities, workplaces, and schools during the COVID-19
pandemic. However, current enzyme-based methods lack sensitivity, speed, simplicity, and require lab
equipment—hence, lack the capability for real-time point-of-presentation (POP) monitoring. In the absence of a
real-time POP monitoring capability, SARS-CoV-2 transmission remains poorly understood. In this application,
a multidisciplinary research approach that integrates innovations in rapid-kinetic chemical auto-ligation, non-
enzymatic isothermal signal amplification, solid-state electronics, and biophotonics is proposed to enable the
development of a novel air monitoring system (AMS) that detects and quantifies aerosolized SARS-CoV-2 at
the point of presentation in real-time. Recent advances in viral culturing protocols, air sampling technology, and
single-photon detection capability will provide the framework for a collaborative research endeavor to establish
a new paradigm to address the knowledge gap between the spread of COVID-19 and SARS-CoV-2 aerosol
transmission. Therefore, the proposal is aimed at transforming the way COVID-19 is currently researched by
providing a tool to enable unparalleled studies that will significantly advance the current knowledgebase. These
transformative studies could ultimately guide a new field of investigations that lead to a better understanding of
COVID-19 spread, such as viral exposure vs. risk, viral decay rate vs. infectivity, and viral load vs. infectious
dose in SARS-CoV-2 airborne transmission. At a minimum, the proposed three research objectives will provide
a basic understanding of COVID-19 aerosol transmission. Firstly, current air sampling systems use a multi-step
workflow that takes several hours to complete and requires lab equipment, reagents, and significant hands-on
time. The goal of objective 1 is to combine air sampling and detection into a one-step real-time POP AMS
device that yields SARS-CoV-2 quantification results in less than 5 minutes, without lab equipment or reagents.
Secondly, viral inoculum, or initial dose of virus, aspirated into the nasal cavity and lungs has been associated
with disease onset and severity. The goal of objective 2 is to optimize and validate AMS to correlate readings
from the air monitoring device with tissue-culture infectious dose (TCID50) and reverse transcription
polymerase chain reaction (RT-PCR) quantities. These parameters can then later be applied to Human studies
to determine the Human infectious dose of SARS-CoV-2 by aerosol transmission. Thirdly, field-based testing in
hospitals will provide a means to beta test AMS performance in high-risk environments. The goal of objective 3
is to calibrate AMS measurements with RT-PCR cycle-threshold (Ct) values and cell-culture TCID50 viability
results and then benchmark with results from high-risk environments taken from around the world to correlate
SARS-CoV-2 aerosol concentrations with global infection rate, as a potential for establishing threshold levels.
项目摘要
在气溶胶中快速监测SARS-COV-2的能力 - 大小<5μm的滴颗粒蒸发到Dropret中
核并被悬浮在空气中 - 在演示点上,对于管理感染风险至关重要
随着人们在Covid-19期间返回社区,工作场所和学校的空气传播,
大流行。但是,基于酶的方法缺乏灵敏度,速度,简单
设备 - 缺乏实时露天点(POP)监视的能力。
实时的POP监测能力,SARS-COV-2传输在此应用中仍然很差。
一种多学科研究方法,将创新整合到快速运动化学自动结合中
提出了酶等温信号信号放大,固态电子和生物光谱学以使您成为主题
开发一种新型的空气监测系统(AMS),该系统检测和量化了雾化的SARS-COV-2 ATT
实时介绍的重点。
单光子检测可粘性将主要为建立协作研究的框架
一个新的范式来解决Covid-19和Sars-Cov-2气溶胶之间的知识差距
因此。
提供一种工具来实现非平行的研究,可以显着推进当前的知识库。
变革性研究最终可以指导一个新的调查领域,从而更好地理解
COVID-19-19
SARS-COV-2机载传输中的剂量至少为三个互动目标
对COVID-19的基本理解,首先是当前的空气符号系统
工作流需要几个小时才能完成,需要实验室设备
时间。目标1的目标是将空气采样和检测结合在一起
产生SARS-COV-2量化的设备在没有实验室设备或试剂的情况下会导致比5分钟少的设备。
其次,病毒接种或病毒的初始剂量被吸入鼻腔和肺部。
疾病的发作和严重性。
从带有组织文化感染剂量(TCID50)的空气监测装置和逆转录
聚合酶链反应(RT-PCR)量。
通过气溶胶传播确定人类传染剂量的SARS-COV-2。
医院将在高风险环境中提供beta测试AMS的手段。
是用RT-PCR周期阈值(CT)值和培养物TCID50生存能力校准AM测量
结果和蒂马克(Thimark)以及来自世界各地的高风险环境的结果
具有全球感染率的SARS-COV-2气溶胶浓度,如建立阈值水平的ASA潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo Mancebo其他文献
Ricardo Mancebo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ricardo Mancebo', 18)}}的其他基金
Development of a handheld rapid air sensing system to monitor and quantify SARS-CoV-2 in aerosols in real-time
开发手持式快速空气传感系统,实时监测和量化气溶胶中的 SARS-CoV-2
- 批准号:
10854070 - 财政年份:2023
- 资助金额:
$ 272.32万 - 项目类别:
Isothermal Chain Reaction (ICR) Rapid and Early Detection of Pathogens for Sepsis Pont-of-Care Testing, Stratification, and Monitoring
等温链反应 (ICR) 快速、早期检测病原体,用于脓毒症即时护理测试、分层和监测
- 批准号:
9200259 - 财政年份:2016
- 资助金额:
$ 272.32万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mitigation of ventilation-based resuspension and spread of airborne viruses in nosocomial and healthcare settings
减轻医院和医疗机构中基于通气的空气传播病毒的再悬浮和传播
- 批准号:
10668064 - 财政年份:2023
- 资助金额:
$ 272.32万 - 项目类别:
Development of a handheld rapid air sensing system to monitor and quantify SARS-CoV-2 in aerosols in real-time
开发手持式快速空气传感系统,实时监测和量化气溶胶中的 SARS-CoV-2
- 批准号:
10854070 - 财政年份:2023
- 资助金额:
$ 272.32万 - 项目类别:
Elucidating Airborne SARS-CoV-2 Infectivity at Single Aerosol Resolution
在单一气溶胶分辨率下阐明空气传播的 SARS-CoV-2 感染性
- 批准号:
10239915 - 财政年份:2022
- 资助金额:
$ 272.32万 - 项目类别: