Oxygen-eluting scaffolds for cranial bone regeneration
用于颅骨再生的氧气洗脱支架
基本信息
- 批准号:10586040
- 负责人:
- 金额:$ 45.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3D PrintAddressAdipose tissueAdoptionAnatomyAutologous TransplantationBiocompatible MaterialsBlood VesselsBone MatrixBone RegenerationBone TransplantationCalvariaCell FractionCell SeparationCell SurvivalCell TransplantationCellsCephalicCessation of lifeClinicalComplexComputer ModelsCuesDataDefectDevelopmentDiameterEconomic BurdenEncapsulatedEndothelial CellsEstheticsFatty acid glycerol estersFeedbackFibrinFluorescenceFormulationFractureHarvestHindlimbHumanHydrogelsHypoxiaImageImplantIn SituIn VitroInjuryLasersMicrospheresMineralsModelingMonitorMorphogenesisMulti-modal optical imagingMultimodal ImagingMusNatural regenerationOperative Surgical ProceduresOpticsOsteogenesisOxygenPatientsPerfusionPermeabilityPhenotypePoint of Care TechnologyPolymersPolyvinyl AlcoholPorosityPowder dose formProcessRadialRattusRegenerative capacityShapesSignal TransductionSiteStem cell transplantStructureTechnologyTestingThickTissue EngineeringTissuesTransplantationTreatment EfficacyVascular remodelingVascularizationbioactive scaffoldbioscaffoldboneclinical translationcontrolled releasecraniofacialcraniofacial bonedesignefficacy validationhealinghemodynamicshyperbaric chamberin vivoin vivo optical imaginginsightlong bonemanufacturemetermultimodalitynext generationnon-invasive monitornovelosteogenicpoint of carepolycaprolactonepressureprogenitorresponserestorationscaffoldscale upsimulationspatiotemporalstandard of carestem cell survivalstem cellstissue regenerationwound
项目摘要
Each year, there are approximately 200,000 craniofacial fractures requiring bone transplantation in the US with
an economic burden of $2B. These injuries often require multiple complex surgeries, which do not achieve
adequate functional or aesthetic restoration. To address this limitation, the field of tissue engineering has
employed advanced approaches that combine a patient’s own cells with customized bioactive scaffolds to
induce regeneration. For efficacious clinical translation of tissue engineering strategies, it is crucial to develop
them as point-of-care technologies in which the harvesting of cells, their packaging into scaffolds, and
immediate transplantation into the defect site will take place within a single surgical procedure. A major hurdle
of this strategy is that the hypoxic wound microenvironment impedes the ability of surviving cells to orchestrate
regeneration. To overcome this limitation, we propose to design scaffolds capable of delivering oxygen (O2)
along with the cells. Specifically, we will embed O2-eluting microtanks (µtanks) – hollow, polymeric
microspheres capable of ‘storing’ O2 at elevated pressures and slowly releasing it into the cellular
microenvironment – into scaffolds comprised of polycaprolactone (PCL) and decellularized bone matrix (DCB)
that are 3D-printed in precise, anatomic shapes. To effectively design O2-eluting, PCL-DCB-µtank scaffolds
and track the enhanced viability and therapeutic efficacy of transplanted stromal vascular fraction (SVF) cells
harvested from lipoaspirate, we will utilize multimodal in vivo optical imaging. This will provide quantitative data
on the in vivo microenvironmental factors that impact stem cell survival and tissue regeneration following
transplantation and uniquely inform the design process leading to more effective, next-generation biomaterial
scaffolds. We hypothesize that the delivery of oxygen using our microtank technology for up to four days will
enhance stem cell survival, vascularization and bone formation within the defect and that by non-invasively
monitoring the effects of oxygen delivery via a cranial window, we can optimize the design of the scaffold. In
Specific Aim 1, we will manufacture 10-50 µm diameter biodegradable polyvinyl alcohol microtanks,
incorporate them into the struts of the 3D-printed scaffolds, and validate the spatiotemporal O2 gradients within
the scaffolds in response to varying the microtank concentrations and loading pressures. In Specific Aim 2, we
will integrate experimental data of O2 concentrations most favorable to vascular morphogenesis/osteogenic
differentiation of SVF with numerical simulations to predict the scaffold designs that provide favorable
spatiotemporal O2 gradients to promote tissue regeneration. In Specific Aim 3, we will utilize non-invasive,
multimodal imaging to dynamically monitor transplanted cells and vascular assembly in PCL-DCB-µtank
scaffolds and use this to enhance scaffold design. We will test the optimal designs in a scaled-up, stringent,
vasculature-limited model of bone regeneration. The complementary tissue engineering/imaging strengths will
provide unprecedented insight into bone regeneration and produce novel platform biomaterial technologies.
在美国,每年大约有 200,000 例颅面骨折需要骨移植,其中
$2B 的经济负担 这些伤害往往需要多次复杂的手术,而这并不能实现。
为了解决这个限制,组织工程领域已经进行了充分的功能或美学修复。
采用先进的方法,将患者自身的细胞与定制的生物活性支架相结合
诱导再生对于组织工程策略的有效临床转化至关重要。
它们作为现场护理技术,其中收获细胞、将其包装到支架中,以及
在一次手术中立即移植到缺损部位是一个主要障碍。
该策略的核心在于,缺氧的伤口微环境会阻碍存活细胞协调的能力
为了克服这一限制,我们建议设计能够输送氧气(O2)的支架。
具体来说,我们将嵌入 O2 洗脱微型罐(μtanks)——中空的聚合物。
能够在高压下“储存”氧气并缓慢将其释放到细胞中的微球
微环境——由聚己内酯(PCL)和脱细胞骨基质(DCB)组成的支架
以精确的解剖形状 3D 打印,以有效设计 O2 洗脱 PCL-DCB-μtank 支架。
并追踪移植基质血管成分 (SVF) 细胞的活力和治疗效果的增强
从脂肪抽吸物中收获,我们将利用多模态体内光学成像,这将提供定量数据。
影响干细胞存活和组织再生的体内微环境因素
移植并为设计过程提供独特的信息,从而产生更有效的下一代生物材料
我们认为使用我们的微型罐技术可以输送氧气长达四天。
通过非侵入性方法增强缺损处的干细胞存活、血管化和骨形成
通过颅窗监测氧气输送的效果,我们可以优化支架的设计。
具体目标1,我们将制造直径10-50微米的可生物降解聚乙烯醇微型罐,
将它们合并到 3D 打印支架的支柱中,并验证其中的时空 O2 梯度
在具体目标 2 中,我们研究了支架对不同微罐浓度和负载压力的响应。
将整合最有利于血管形态发生/成骨的 O2 浓度的实验数据
通过数值模拟对 SVF 进行微分,以预测提供有利的支架设计
在特定目标 3 中,我们将利用非侵入性、时空 O2 梯度来促进组织再生。
多模态成像动态监测 PCL-DCB-μtank 中的移植细胞和血管组装
支架并用它来增强支架设计,我们将按比例放大、严格、测试最佳设计。
骨再生的脉管系统限制模型将具有互补的组织工程/成像优势。
提供对骨再生前所未有的见解并产生新颖的平台生物材料技术。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A robust, autonomous, volumetric quality assurance method for 3D printed porous scaffolds.
- DOI:10.1186/s41205-022-00135-x
- 发表时间:2022-04-06
- 期刊:
- 影响因子:3.7
- 作者:Zhang N;Singh S;Liu S;Zbijewski W;Grayson WL
- 通讯作者:Grayson WL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Warren L Grayson其他文献
Warren L Grayson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Warren L Grayson', 18)}}的其他基金
Regenerating Vascularized and Innervated Skeletal Muscle to Treat VML Defects
再生血管化和神经支配的骨骼肌来治疗 VML 缺陷
- 批准号:
10748834 - 财政年份:2023
- 资助金额:
$ 45.91万 - 项目类别:
Engineered osteogenic growth factors for targeted stimulation of bone regeneration
用于定向刺激骨再生的工程成骨生长因子
- 批准号:
10459814 - 财政年份:2022
- 资助金额:
$ 45.91万 - 项目类别:
Engineered osteogenic growth factors for targeted stimulation of bone regeneration
用于定向刺激骨再生的工程成骨生长因子
- 批准号:
10610434 - 财政年份:2022
- 资助金额:
$ 45.91万 - 项目类别:
Regenerating Vascularized and Innervated Skeletal Muscle to Treat VML Defects
再生血管化和神经支配的骨骼肌来治疗 VML 缺陷
- 批准号:
10433958 - 财政年份:2020
- 资助金额:
$ 45.91万 - 项目类别:
Regenerating Vascularized and Innervated Skeletal Muscle to Treat VML Defects
再生血管化和神经支配的骨骼肌来治疗 VML 缺陷
- 批准号:
10229561 - 财政年份:2020
- 资助金额:
$ 45.91万 - 项目类别:
Regenerating Vascularized and Innervated Skeletal Muscle to Treat VML Defects
再生血管化和神经支配的骨骼肌来治疗 VML 缺陷
- 批准号:
10028936 - 财政年份:2020
- 资助金额:
$ 45.91万 - 项目类别:
Regenerating Vascularized and Innervated Skeletal Muscle to Treat VML Defects
再生血管化和神经支配的骨骼肌来治疗 VML 缺陷
- 批准号:
10653183 - 财政年份:2020
- 资助金额:
$ 45.91万 - 项目类别:
Regenerating Vascularized and Innervated Skeletal Muscle to Treat VML Defects
再生血管化和神经支配的骨骼肌来治疗 VML 缺陷
- 批准号:
10862957 - 财政年份:2020
- 资助金额:
$ 45.91万 - 项目类别:
Oxygen-eluting scaffolds for cranial bone regeneration
用于颅骨再生的氧气洗脱支架
- 批准号:
10370302 - 财政年份:2019
- 资助金额:
$ 45.91万 - 项目类别:
Oxygen-eluting scaffolds for cranial bone regeneration
用于颅骨再生的氧气洗脱支架
- 批准号:
9888389 - 财政年份:2019
- 资助金额:
$ 45.91万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Simulation and Education Tool for Physical Examinations of Orthopedic Pathologies
用于骨科病理体检的模拟和教育工具
- 批准号:
10484180 - 财政年份:2022
- 资助金额:
$ 45.91万 - 项目类别:
Addressing Lumbar Puncture Challenges Using Patch Ultrasound and Augmented Reality
使用贴片超声和增强现实解决腰椎穿刺挑战
- 批准号:
10258250 - 财政年份:2021
- 资助金额:
$ 45.91万 - 项目类别:
Oxygen-eluting scaffolds for cranial bone regeneration
用于颅骨再生的氧气洗脱支架
- 批准号:
10370302 - 财政年份:2019
- 资助金额:
$ 45.91万 - 项目类别: