Longitudinal Spatial-Nonspatial Decision Support for Competing Outcomes in Head and Neck Cancer Therapy
头颈癌治疗竞争结果的纵向空间-非空间决策支持
基本信息
- 批准号:10582612
- 负责人:
- 金额:$ 46.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAffectAgeAmerican Joint Committee on CancerAnatomyBig DataBiologicalBiomedical ComputingBiomedical EngineeringCancer CenterCharacteristicsChemotherapy and/or radiationChronicClinicClinicalClinical ManagementClinical ResearchComplexComputer ModelsComputing MethodologiesCountryDataData SetDecision Support ModelDecision Support SystemsDevelopmentDiabetes MellitusDiagnosisDiseaseDoseEpidemicEquilibriumEthnic OriginEthnic PopulationExtramural ActivitiesFundingHead and Neck CancerHead and Neck Squamous Cell CarcinomaHybridsImageIndividualLearningLeftLocationMalignant NeoplasmsMalignant neoplasm of brainMalignant neoplasm of lungMental disordersMethodologyMethodsModelingModificationMorbidity - disease rateNauseaOncologistOperative Surgical ProceduresOrganOutcomePatient Outcomes AssessmentsPatientsProbabilityProcessPsychological reinforcementPublic HealthQuality of lifeRadiation Dose UnitRadiation ToleranceRadiation therapyReportingRiskSelection for TreatmentsStagingSubstance abuse problemTherapeuticTherapeutic InterventionTimeToxic effectTrainingTreatment outcomeTreatment-related toxicityUnited StatesUpdateValidationXerostomiaage groupcancer diagnosiscancer survivalcancer therapychemotherapyclinical careclinical decision supportcohortcomputer sciencecomputerized toolsdata repositorydiverse datahigh dimensionalityimprovedin silicoindividual patientindividualized medicineinnovationinsightmortalitynovelnutritionoptimal treatmentsoutcome predictionpatient stratificationpersonalized carepersonalized medicinepredictive modelingprospectiveprototyperepositoryresponserisk predictionrisk prediction modelserial imagingside effectstandard of caresupport toolssurvival outcomesymptom clustertreatment planningtreatment responsetreatment strategytumor
项目摘要
Cancers that depend on the spatial location of the disease affect all ethnicities and age groups,
accounting for significant mortality and therapy-related side effects. In one instance, over 50,000
new cases of head and neck squamous carcinomas are diagnosed each year in the United
States, leading to large, rich repositories of patient data. For each of these cases, oncologists
need to anticipate survival, oncologic, and toxicity outcomes associated with treatment
strategies in order to select a treatment which balances efficacy and toxicity. However, despite
the wealth of data available, in the clinic decision support for cancer treatment is rudimentary
and incorporates only a handful of patient characteristics, largely due to a lack of computational
methodology and tools.
We propose to construct a novel statistical and computational methodology for longitudinal and
personalized treatment decisions over time, with specific application to head and neck cancer
therapy planning. Simultaneous incorporation of complex factors---such as radiation dose
location with respect to radiosensitive organs or patient reported side effects affecting quality of
life---into treatment decisions over the course of cancer therapy requires the development of
novel methodology. This methodology is revolutionary in that it is the first in the field to include
both imaging and nonimaging data, while taking into account large-scale biological and clinical
correlates. The approach is innovative through its leverage of big data repositories and through
its unique blend of computational modeling principles from bioengineering and computer
science. These methods allow us to incorporate diverse data types and model competing
outcomes.
From a clinical perspective, this integrative approach is novel in the field of cancer therapy. The
resulting clinical decision support methodology will mark a significant advance in biomedical
computing because it will be able to identify, for the first time, actionable timepoints for therapy
and toxicity modification, based on a patient’s characteristics and quality of life indicators. The
empirically-derived treatment decision support methodology developed in this project has the
potential to directly improve the standard of care and the quality of life of surviving patients with
a grave, often fatal and debilitating illness.
取决于疾病的空间位置的癌症会影响所有种族和年龄段,
考虑了重大死亡率和与治疗相关的副作用。在一个实例中,超过50,000
每年在联合诊断出头部和颈部鳞状癌的新病例
各州,导致大量,丰富的患者数据存储库。对于每种情况,肿瘤学家
需要预测与治疗相关的生存,肿瘤学和毒性结果
策略以选择平衡效率和毒性的治疗方法。但是,需求
可用数据的财富,在诊所的癌症治疗支持中是基本的
并且仅包含少数患者特征,这主要是由于缺乏计算
方法和工具。
我们建议为纵向和
随着时间的推移,个性化治疗决策,并针对头颈癌进行了特定的应用
治疗计划。同时纳入复杂因素的行业 - 例如辐射剂量
关于放射敏感器官或患者报告的副作用的位置,影响质量
生活---在癌症治疗过程中进行治疗决策需要发展
新方法。这种方法是革命性的,因为它是该领域的第一个包括
成像和非成像数据,同时考虑到大规模的生物学和临床
相关。该方法通过大数据存储库的杠杆作用和通过
它从生物工程和计算机中的计算建模原理的独特融合
科学。这些方法使我们能够合并潜水员的数据类型并模拟竞争
结果。
从临床角度来看,这种综合方法在癌症治疗领域是新颖的。这
由此产生的临床决策支持方法将标志着生物医学的重大进步
计算是因为它将能够首次识别可操作的治疗时间点
基于患者的特征和生活质量指标,毒性修饰。这
该项目中开发的经验衍生的治疗决策支持方法论
有可能直接提高护理标准和生存患者的生活质量
坟墓,通常是致命的和使人衰弱的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GUADALUPE CANAHUATE其他文献
GUADALUPE CANAHUATE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GUADALUPE CANAHUATE', 18)}}的其他基金
Longitudinal Spatial-Nonspatial Decision Support for Competing Outcomes in Head and Neck Cancer Therapy
头颈癌治疗竞争结果的纵向空间-非空间决策支持
- 批准号:
10185481 - 财政年份:2021
- 资助金额:
$ 46.93万 - 项目类别:
Longitudinal Spatial-Nonspatial Decision Support for Competing Outcomes in Head and Neck Cancer Therapy
头颈癌治疗竞争结果的纵向空间-非空间决策支持
- 批准号:
10524196 - 财政年份:2021
- 资助金额:
$ 46.93万 - 项目类别:
Longitudinal Spatial-Nonspatial Decision Support for Competing Outcomes in Head and Neck Cancer Therapy
头颈癌治疗竞争结果的纵向空间-非空间决策支持
- 批准号:
10359180 - 财政年份:2021
- 资助金额:
$ 46.93万 - 项目类别:
Longitudinal Spatial-Nonspatial Decision Support for Competing Outcomes in Head and Neck Cancer Therapy
头颈癌治疗竞争结果的纵向空间-非空间决策支持
- 批准号:
10381044 - 财政年份:2021
- 资助金额:
$ 46.93万 - 项目类别:
QuBBD: Precision E –Radiomics for Dynamic Big Head & Neck Cancer Data
QuBBD:Precision E – 动态大头放射组学
- 批准号:
9762879 - 财政年份:2017
- 资助金额:
$ 46.93万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 46.93万 - 项目类别:
Differences in Hospital Nursing Resources among Black-Serving Hospitals as a Driver of Patient Outcomes Disparities
黑人服务医院之间医院护理资源的差异是患者结果差异的驱动因素
- 批准号:
10633905 - 财政年份:2023
- 资助金额:
$ 46.93万 - 项目类别:
Competitive Bidding in Medicare and the Implications for Home Oxygen Therapy in COPD
医疗保险竞争性招标以及对慢性阻塞性肺病家庭氧疗的影响
- 批准号:
10641360 - 财政年份:2023
- 资助金额:
$ 46.93万 - 项目类别:
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
- 批准号:
10661931 - 财政年份:2023
- 资助金额:
$ 46.93万 - 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 46.93万 - 项目类别: