Serine/Threonine Phosphatases in Neurological Diseases
神经系统疾病中的丝氨酸/苏氨酸磷酸酶
基本信息
- 批准号:10583671
- 负责人:
- 金额:$ 53.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:A kinase anchoring proteinActive SitesAffinity ChromatographyAlzheimer&aposs DiseaseBindingBiochemicalBiologicalBiological ProcessBrainCalcineurinCell LineCellsCellular biologyCollaborationsComplexCoupledCyclic AMP-Dependent Protein KinasesCyclosporineDataDevelopmentDiseaseEnvironmentFK506FoundationsFundingImmunosuppressive AgentsKnowledgeLeadLong-Term DepressionLong-Term PotentiationMAP3K7 geneMAP3K7IP1 geneMass Spectrum AnalysisMediatingMemoryMolecularMolecular TargetNervous System PhysiologyNeuronsPPP3CA genePhosphoric Monoester HydrolasesPhosphorylationPhosphotransferasesPhysiologicalPhysiologyPopulationPost-Translational Protein ProcessingProcessProtein DephosphorylationProtein phosphataseProteinsProteomeRecording of previous eventsRegulationResearchResearch PersonnelResolutionRoleScaffolding ProteinSerineShapesSignal PathwaySignal TransductionStimulusStrokeStructureSubstrate InteractionSystemTechniquesThreonineWorkcalcineurin phosphatasecell typeexperimental studyhuman diseaseinhibitorinnovationinsightnervous system disorderneuron developmentneurotransmissionnovelpalmitoylationreceptorrecruitresponsesuccesstherapeutic targettoolvoltage
项目摘要
ABSTRACT. Phosphorylation is one of the most ubiquitous, reversible posttranslational modifications in cells,
and is a critical component of most signaling cascades. Strict temporal and spatial control are essential for the
fidelity of this process, as derailed signaling cascades lead to disease. Here, we continue our long-standing
effort to investigate signaling in neurons. If neuronal signaling goes awry, the most prominent results are well
known diseases, such as Alzheimer's disease and stroke. Recently, we successfully determined how the most
ubiquitous neuronal ser/thr protein phosphatase (PPP) calcineurin (CN) recruits its substrates. Namely, CN
binds regulators and substrates via CN-specific recruitment motifs (PxIxIT and LxVP). Further, we also
discovered that CN uses an active site recognition sequence (TxxP) to target substrate phosphosites, which,
in turn, drives vital biological functions. This is the first defined active site recognition sequence for any PPP,
transforming our ability to identify novel CN-specific phosphosites. Here, we will leverage our newly established
tools and discoveries to achieve three aims. First, we will establish the CN interactome and substratome in
distinct neuronal populations. This will enable us to demonstrate the diversity of CN functions in neurons, define
if they differ in response to stimuli as well as identify the molecular substrates that are necessary for these
changes to occur. Building further on the success of the previous funding period, we will also advance our
molecular understanding of CN substrate recruitment by studying two critical CN substrate signaling platforms:
CN-AKAP5 and CN-TAK1. Specifically, we will show that the these signaling platforms utilize multiple,
competing PxIxIT/LxVP motifs to recruit CN via different proteins and show how these distinct mechanisms
define CN substrate dephosphorylation efficacy. Critically, our preliminary data suggest that posttranslational
modification of AKAP5 modulates CN control of PKA activity and ultimately receptor regulation. Finally, we
have also recently confirmed our prediction that the transforming growth factor-β activated kinase 1 (TAK1)
binds directly to CN. However, unexpectedly the TAK1 regulator TAB2 also binds directly to CN via different
LxVP and PxIxIT motifs. We will investigate the mechanisms and consequences of this interaction on CN
recruitment and TAK1 function. The modes of action and regulation of CN in the AKAP5 and TAK1 signaling
platforms are unexpected and highlight the broad variety of mechanisms used to regulate CN activity. Taken
together, the proposed studies leverage a powerful integrated approach that combines atomic resolution
techniques with biochemical and cell biology experiments to obtain novel insights into the molecular
mechanisms used to direct CN activity. Because CN has critical roles in human diseases generally, and in the
brain specifically, and because CN is the only successfully therapeutically targeted PPP (CN is the target of
the blockbuster immunosuppressants cyclosporin A and FK-506), our proposed work will provide a critically
needed molecular and cellular understanding of CN activity and regulation in neuronal function.
抽象的。磷酸化是细胞中最普遍,可逆的翻译后修饰之一,
并且是大多数信号级联的关键组成部分。严格的临时控制和空间控制对于
由于出轨的信号级联反应导致疾病,因此此过程的保真度。在这里,我们继续长期存在
努力研究神经元中的信号传导。如果神经元信号出现问题,最突出的结果是很好
已知疾病,例如阿尔茨海默氏病和中风。最近,我们成功地确定了最多的
无处不在的神经元菌/THR蛋白磷酸酶(PPP)钙调神经酶(CN)募集其底物。即CN
通过CN特异性募集图案(PXIXIT和LXVP)结合调节剂和底物。此外,我们也是如此
发现CN使用主动位点识别序列(TXXP)来靶向底物磷脂,这是
反过来,驱动重要的生物学功能。这是任何PPP的第一个定义的活动位点识别序列
改变了我们鉴定新型CN特异性磷酸材料的能力。在这里,我们将利用我们新建立的
工具和发现以实现三个目标。首先,我们将在
独特的神经元种群。这将使我们能够证明神经元中CN功能的多样性,定义
如果它们对刺激的响应有所不同,并确定了这些分子底物
发生变化。进一步建立在上一期资金时期的成功,我们还将推进我们的
通过研究两个关键CN底物信号平台的分子理解CN底物募集:
CN-AKAP5和CN-TAK1。具体而言,我们将证明这些信号平台利用多个,
竞争PXIXIT/LXVP基序可通过不同的蛋白质募集CN,并显示这些不同机制如何
定义CN底物去磷酸化效率。至关重要的是,我们的初步数据表明翻译后
AKAP5的修饰调节CN对PKA活性的控制和最终受体调节。最后,我们
最近还确认了我们的预测,转化生长因子-β激活激活的激酶1(TAK1)
直接与CN结合。但是,出乎意料的是,TAK1调节器TAB2还通过不同的
LXVP和PXIXIT主题。我们将研究这种相互作用对CN的机制和后果
招聘和TAK1功能。 AKAP5和TAK1信号传导中CN的作用和调节模式
平台是出乎意料的,突出了用于调节CN活性的各种机制。拍摄
拟议的研究共同利用了一种结合原子分辨率的强大综合方法
具有生化和细胞生物学实验的技术,以获得分子的新见解
用于指导CN活性的机制。因为CN通常在人类疾病中和
具体的大脑,并且因为CN是唯一成功靶向的PPP(CN是
大片免疫抑制剂Cyclosporin A和FK-506),我们的拟议工作将提供至关重要的工作
需要分子和细胞对CN活性以及神经元功能调节的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wolfgang Peti其他文献
Wolfgang Peti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wolfgang Peti', 18)}}的其他基金
Shared Tundra screening cryo-EM for New England
新英格兰共享 Tundra 冷冻电镜筛查
- 批准号:
10413473 - 财政年份:2022
- 资助金额:
$ 53.63万 - 项目类别:
Mechanism and activity of beta-lactam resistant enzymes in E. faecium and E. faecalis
屎肠球菌和粪肠球菌中β-内酰胺抗性酶的机制和活性
- 批准号:
10624757 - 财政年份:2019
- 资助金额:
$ 53.63万 - 项目类别:
Protein Phosphatase 1 Holoenzyme Formation and Subunit Exchange
蛋白磷酸酶 1 全酶形成和亚基交换
- 批准号:
9985412 - 财政年份:2019
- 资助金额:
$ 53.63万 - 项目类别:
Mechanism and activity of beta-lactam resistant enzymes in E. faecium and E. faecalis
屎肠球菌和粪肠球菌中β-内酰胺抗性酶的机制和活性
- 批准号:
10391315 - 财政年份:2019
- 资助金额:
$ 53.63万 - 项目类别:
Mechanism and activity of beta-lactam resistant enzymes in E. faecium and E. faecalis
屎肠球菌和粪肠球菌β-内酰胺抗性酶的机制和活性
- 批准号:
9927573 - 财政年份:2019
- 资助金额:
$ 53.63万 - 项目类别:
Dynamics & energetics of p38a kinase regulation by ligands
动力学
- 批准号:
8608555 - 财政年份:2013
- 资助金额:
$ 53.63万 - 项目类别:
Dynamics & energetics of p38a kinase regulation by ligands
动力学
- 批准号:
8436569 - 财政年份:2013
- 资助金额:
$ 53.63万 - 项目类别:
相似海外基金
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 53.63万 - 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 53.63万 - 项目类别:
Structural and Functional Analysis of Proteasome Core Particle Biogenesis
蛋白酶体核心颗粒生物发生的结构和功能分析
- 批准号:
10340354 - 财政年份:2022
- 资助金额:
$ 53.63万 - 项目类别:
Structural and Functional Analysis of Proteasome Core Particle Biogenesis
蛋白酶体核心颗粒生物发生的结构和功能分析
- 批准号:
10609420 - 财政年份:2022
- 资助金额:
$ 53.63万 - 项目类别:
Metal-binding Isosteres for Influenza Endonuclease Inhibitors and Beyond
流感核酸内切酶抑制剂及其他药物的金属结合等排体
- 批准号:
10594905 - 财政年份:2020
- 资助金额:
$ 53.63万 - 项目类别: