Improving Methods and Practices for Trans-Ethnic Genetic Studies
改进跨种族遗传研究的方法和实践
基本信息
- 批准号:10584152
- 负责人:
- 金额:$ 45.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-18 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:All of Us Research ProgramArchitectureBenchmarkingBiologicalCalibrationClinicalComplexComputer softwareDataData AggregationData LinkagesData SetDiseaseElectronic Health RecordEthnic OriginEvaluationFutureGenesGeneticGenetic ResearchGenetic studyGenomicsHaplotypesHealthHealthcare SystemsHumanJapanKnowledgeKoreansLaboratoriesLinkLinkage DisequilibriumMapsMeasuresMedicineMeta-AnalysisMethodsModelingPatternPopulationPopulation GeneticsPopulation HeterogeneityResearch DesignResolutionResourcesSample SizeSamplingStatistical MethodsTaiwanTestingTrainingUnited StatesUniversitiesValidationVariantWeightWorkbiobankbiomarker performancecausal variantcomparativedata harmonizationdata integrationdisorder riskepidemiology studyexperienceflexibilitygenetic analysisgenetic architecturegenetic predictorsgenetic variantgenome resourcegenome wide association studygenome-widegenomic locusimprovedlarge scale datamethod developmentnovelopen sourcepersonalized health carepolygenic risk scorepopulation basedportabilityrisk predictionsimulationstatisticstrait
项目摘要
ABSTRACT
Trans-ancestry genetic analysis can facilitate the discovery of trait- or disease-associated loci, characterize
shared and differential genetic architectures across populations, improve the delineation of causal variants,
and is critical for equal delivery of genomic knowledge and precision healthcare globally. However, current
trans-ancestry genetic research is impeded by (i) limited genomic resources for non-European populations;
and (ii) limited statistical methods that can appropriately model and integrate data from diverse populations.
This project will address these challenges by (i) aggregating and harmonizing genetic data, physical measures,
laboratory tests and disease information from global biobanks and multiple health care systems in the United
States, with >795K samples of non-European ancestry and a total sample size >1.5M by 2023; and (ii)
developing statistical methods and improving practices to integrate multi-ancestry data for cross-population
characterization of genetic architectures, meta-analysis, statistical fine-mapping and polygenic prediction.
Specifically, in Aim 1, we will systematically characterize the genetic underpinnings of human complex traits
and common diseases at variant, locus, regional and genome-wide levels across diverse populations, and
discover and validate novel genetic loci through trans-ancestry meta-analysis. In Aim 2, we will develop
scalable, robust, accurate and flexible statistical methods for trans-ancestry fine-mapping, delineate putative
causal genetic variants for a range of complex traits and diseases, and explore their functional consequences
and biological mechanisms. In Aim 3, we will develop haplotype-based methods for improved trans-ancestry
polygenic prediction, and benchmark the clinical utility of polygenic scores in disease risk prediction across
diverse populations. Leveraging large-scale biobank resources and novel simulation frameworks, we will
additionally enable fair and rigorous comparisons of existing and emerging methods for the integrative analysis
of multi-ancestry data, and assess various analysis choices and practical considerations in trans-ancestry fine-
mapping and genetic prediction in order to inform future study design and analysis plan, as well as methods
development, evaluation and application in trans-ancestry settings.
抽象的
跨祖先遗传分析可以促进性状或疾病相关基因座的发现,表征
跨人群共享和差异的遗传结构,改善因果变异的描述,
对于全球基因组知识的平等传播和精准医疗保健至关重要。然而,目前
跨祖先遗传研究受到以下因素的阻碍:(i) 非欧洲人群的基因组资源有限;
(ii) 能够适当建模和整合来自不同人群的数据的统计方法有限。
该项目将通过以下方式应对这些挑战:(i) 汇总和协调遗传数据、物理测量、
来自全球生物库和美国多个医疗保健系统的实验室测试和疾病信息
到 2023 年,拥有 >795K 个非欧洲血统样本,总样本量 >150 万个; (二)
开发统计方法并改进实践,以整合跨人群的多血统数据
遗传结构的表征、荟萃分析、统计精细绘图和多基因预测。
具体来说,在目标 1 中,我们将系统地描述人类复杂性状的遗传基础
以及不同人群中变异、位点、区域和全基因组水平的常见疾病,以及
通过跨祖先荟萃分析发现并验证新的遗传位点。在目标 2 中,我们将开发
可扩展、稳健、准确和灵活的统计方法,用于跨祖先精细绘图,描绘假定的
一系列复杂特征和疾病的因果遗传变异,并探索其功能后果
和生物学机制。在目标 3 中,我们将开发基于单倍型的方法来改进跨祖先研究
多基因预测,并对多基因评分在疾病风险预测中的临床效用进行基准测试
不同的人群。利用大规模生物样本库资源和新颖的模拟框架,我们将
此外,还可以对现有和新兴的综合分析方法进行公平和严格的比较
多祖先数据,并评估跨祖先精细的各种分析选择和实际考虑因素
绘图和遗传预测,以便为未来的研究设计和分析计划以及方法提供信息
跨祖先环境中的开发、评估和应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tian Ge其他文献
Tian Ge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tian Ge', 18)}}的其他基金
Leveraging computational strategies to disentangle the genetic and neural underpinnings of ADHD and its associated cognitive systems
利用计算策略来解开 ADHD 及其相关认知系统的遗传和神经基础
- 批准号:
10732355 - 财政年份:2023
- 资助金额:
$ 45.88万 - 项目类别:
Improving Methods and Practices for Trans-Ethnic Genetic Studies
改进跨种族遗传研究的方法和实践
- 批准号:
10661266 - 财政年份:2022
- 资助金额:
$ 45.88万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Empowering gene discovery and accelerating clinical translation for diverse admixed populations
促进基因发现并加速不同混合人群的临床转化
- 批准号:
10584936 - 财政年份:2023
- 资助金额:
$ 45.88万 - 项目类别:
Improving Methods and Practices for Trans-Ethnic Genetic Studies
改进跨种族遗传研究的方法和实践
- 批准号:
10661266 - 财政年份:2022
- 资助金额:
$ 45.88万 - 项目类别:
Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
- 批准号:
9816600 - 财政年份:2019
- 资助金额:
$ 45.88万 - 项目类别:
Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
- 批准号:
10439679 - 财政年份:2019
- 资助金额:
$ 45.88万 - 项目类别:
Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
- 批准号:
10670745 - 财政年份:2019
- 资助金额:
$ 45.88万 - 项目类别: