Nanoparticle delivery of miRNA-based therapeutics to overcome clinical challenges in triple negative breast cancer
纳米颗粒递送基于 miRNA 的疗法可克服三阴性乳腺癌的临床挑战
基本信息
- 批准号:10581569
- 负责人:
- 金额:$ 39.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-04 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccountingAcuteAntineoplastic AgentsBindingBiologicalBiological MarkersBiological ProcessBiologyBreast Cancer CellBreast Cancer ModelBreast Cancer PatientBreast Cancer TreatmentCell CommunicationCell LineCellsChronicClinicalComplexCouplingDataDatabasesDeath RateDiffusionDoseDoxorubicinDrug TransportDrug resistanceFeedbackFosteringFutureGoalsHealthImmuneIn VitroInvadedInvestigationMalignant NeoplasmsMalignant neoplasm of pancreasMaximum Tolerated DoseMediatingMethodologyMicroRNAsMissionModelingMolecular TargetNeoplasm MetastasisNormal tissue morphologyOrganPatientsPenetrationPharmaceutical PreparationsPhysicsPre-Clinical ModelProcessPrognosisRelapseRepressionResearchSafetyScheduleSmall Interfering RNASystemTestingThe Cancer Genome AtlasTherapeuticTimeToxic effectTreatment EfficacyTreatment outcomeTumor stageUnited States National Institutes of HealthWorkappropriate doseaptameraxl receptor tyrosine kinasecalmodulin-dependent protein kinase IIIcancer subtypescancer therapychemotherapeutic agentchemotherapyclinical practiceclinical translationclinically significantdosageexperimental studyguided inquiryimprovedin vivoinnovationlipid nanoparticlemalignant breast neoplasmmathematical modelmicroRNA deliverymodel developmentmouse modelnanoparticlenanoparticle deliverynanotherapeuticnanotherapynovel therapeuticspharmacokinetics and pharmacodynamicspharmacologicphysical processpreclinical developmentpredictive modelingreceptorresponsetargeted deliverytargeted treatmenttherapeutic miRNAtherapeutic targettherapeutically effectivetriple-negative invasive breast carcinomatumortumor growthtumor microenvironmenttumorigenesis
项目摘要
Project Summary
Triple-negative breast cancer (TNBC) has the highest patient death rate of all breast cancer subtypes. Several
molecular targets have been identified for breast cancer treatment, but currently, there is no approved,
broadly applicable targeted therapy for TNBC. Through 10 years of research, we found that elongation factor
2-kinase (EF2K) expression is a critical driver of TNBC tumorigenesis and progression. We also found that
microRNA-22 (miR-22) expression is broadly repressed in TNBC patients, and is inversely correlated with EF2K
expression. Further analysis revealed that miR-22 suppresses tumors by specifically binding to EF2K, which
inhibits EF2K expression and reduces tumor growth in multiple TNBC models. Considering the clinical
significance and potential therapeutic value of EF2K in TNBC, we have thus developed an AXL receptor-targeted
AXL aptamer-coated SLNP-miR-22 nanoparticle system that can specifically deliver miR-22 to TNBC tumors in
vivo (but does not lead to miR-22 accumulation in normal tissues).
On the basis of this preliminary work, we hypothesize that EF2K is an effective therapeutic target in TNBC, and
that targeting EF2K using our AXL-aptamer-SLNP-miR-22 nanotherapeutics can provide significant therapeutic
efficacy in TNBC treatment. However, understandably, this therapeutic system is complex, and it has been
difficult to further understand the underlying biological and physical processes that significantly impact
treatment outcome, and to identify the optimal doses and dosing schedules for maximizing treatment
efficacy. Therefore, in this project, we propose to overcome this challenge by integrating biological experiments
with mathematical modeling based on the underlying biological and physical mechanisms that are involved in
cancer invasion, drug penetration, and drug-cancer cell interactions in the EF2K-targeted miR-22
nanotherapeutics for TNBC treatment. Our hypothesis will be tested by achieving the following two specific aims:
1) experimental testing of the EF2K-targeted miR-22 nanotherapy (Aim 1), and 2) mathematical modeling (Aim
2). In Aim 1, we will focus on characterizing and determining the in vivo therapeutic efficacy of EF2K-targeted
miR-22 mediated therapies in orthotopic mouse models. In Aim 2, we will focus on developing, testing, and
validating a mathematical model of EF2K-targeted, miR-22 based nanotherapy, using a logically integrated
statistical and multiscale mechanistic modeling approach. Experimental data from Aim 1 will be supplied to Aim
2 for developing and validating the mathematical model, and experiments in Aim 1 will be guided by discoveries
obtained from computational investigations in Aim 2. Through this iteration-based feedback approach, the
mathematical model will be used to predict and determine the effects of various parameters, including siRNA
dose and dosing schedules, on tumor response to EF2K-targeted miR-22 mediated therapies (with or without
chemotherapy), and to determine the optimal drug doses and dosing schedules for optimizing therapeutic
efficacy. The long-term goal of this project is to demonstrate that this miR-22-based nanotherapy is safe and
effective, both alone and in combination with standard chemotherapeutic agents as a co-adjuvant therapy, and
to complete preclinical development for potential future clinical translation for TNBC patients.
项目概要
三阴性乳腺癌(TNBC)是所有乳腺癌亚型中患者死亡率最高的。一些
乳腺癌治疗的分子靶点已确定,但目前尚无批准的、
广泛适用的TNBC靶向治疗。经过10年的研究,我们发现伸长因子
2-激酶 (EF2K) 表达是 TNBC 肿瘤发生和进展的关键驱动因素。我们还发现
microRNA-22 (miR-22) 表达在 TNBC 患者中广泛受到抑制,并且与 EF2K 呈负相关
表达。进一步分析表明,miR-22通过与EF2K特异性结合来抑制肿瘤,
在多种 TNBC 模型中抑制 EF2K 表达并减少肿瘤生长。考虑到临床
为了认识到 EF2K 在 TNBC 中的重要性和潜在治疗价值,我们开发了一种 AXL 受体靶向药物
AXL 适体包被的 SLNP-miR-22 纳米颗粒系统可将 miR-22 特异性递送至 TNBC 肿瘤
体内(但不会导致 miR-22 在正常组织中积累)。
基于这项初步工作,我们假设 EF2K 是 TNBC 的有效治疗靶点,并且
使用我们的 AXL-aptamer-SLNP-miR-22 纳米疗法靶向 EF2K 可以提供显着的治疗效果
TNBC 治疗的疗效。然而,可以理解的是,这个治疗系统很复杂,而且已经
难以进一步了解显着影响的潜在生物和物理过程
治疗结果,并确定最佳剂量和给药方案以最大化治疗效果
功效。因此,在这个项目中,我们建议通过整合生物实验来克服这一挑战
基于所涉及的潜在生物和物理机制的数学模型
EF2K 靶向 miR-22 中的癌症侵袭、药物渗透和药物与癌细胞相互作用
用于 TNBC 治疗的纳米疗法。我们的假设将通过实现以下两个具体目标来检验:
1) EF2K 靶向 miR-22 纳米疗法的实验测试(目标 1),以及 2) 数学模型(目标
2)。在目标 1 中,我们将重点描述和确定 EF2K 靶向药物的体内治疗功效
原位小鼠模型中 miR-22 介导的治疗。在目标 2 中,我们将专注于开发、测试和
使用逻辑集成验证 EF2K 靶向、基于 miR-22 的纳米疗法的数学模型
统计和多尺度机械建模方法。 Aim 1 的实验数据将提供给 Aim
2 用于开发和验证数学模型,目标 1 中的实验将以发现为指导
从目标 2 中的计算研究中获得。通过这种基于迭代的反馈方法,
数学模型将用于预测和确定各种参数的影响,包括siRNA
剂量和给药方案,关于肿瘤对 EF2K 靶向 miR-22 介导的疗法(有或没有
化疗),并确定最佳药物剂量和给药方案以优化治疗
功效。该项目的长期目标是证明这种基于 miR-22 的纳米疗法是安全且有效的。
单独使用或与标准化疗药物联合作为辅助辅助治疗均有效,并且
完成临床前开发,以实现未来针对 TNBC 患者的潜在临床转化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bulent Ozpolat其他文献
Bulent Ozpolat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bulent Ozpolat', 18)}}的其他基金
Nanoparticle delivery of miRNA-based therapeutics to overcome clinical challenges in triple negative breast cancer
纳米颗粒递送基于 miRNA 的疗法可克服三阴性乳腺癌的临床挑战
- 批准号:
10219703 - 财政年份:2021
- 资助金额:
$ 39.01万 - 项目类别:
Nanoparticle delivery of miRNA-based therapeutics to overcome clinical challenges in triple negative breast cancer
纳米颗粒递送基于 miRNA 的疗法可克服三阴性乳腺癌的临床挑战
- 批准号:
10364691 - 财政年份:2021
- 资助金额:
$ 39.01万 - 项目类别:
相似国自然基金
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
- 批准号:82300182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Nanoparticle delivery of miRNA-based therapeutics to overcome clinical challenges in triple negative breast cancer
纳米颗粒递送基于 miRNA 的疗法可克服三阴性乳腺癌的临床挑战
- 批准号:
10219703 - 财政年份:2021
- 资助金额:
$ 39.01万 - 项目类别:
Nanoparticle delivery of miRNA-based therapeutics to overcome clinical challenges in triple negative breast cancer
纳米颗粒递送基于 miRNA 的疗法可克服三阴性乳腺癌的临床挑战
- 批准号:
10364691 - 财政年份:2021
- 资助金额:
$ 39.01万 - 项目类别:
DNA demethylation and the reprogramming of transcriptional dynamics
DNA 去甲基化和转录动力学重编程
- 批准号:
8721098 - 财政年份:2014
- 资助金额:
$ 39.01万 - 项目类别:
DNA demethylation and the reprogramming of transcriptional dynamics
DNA 去甲基化和转录动力学重编程
- 批准号:
9116799 - 财政年份:2014
- 资助金额:
$ 39.01万 - 项目类别:
DNA demethylation and the reprogramming of transcriptional dynamics
DNA 去甲基化和转录动力学重编程
- 批准号:
8875463 - 财政年份:2014
- 资助金额:
$ 39.01万 - 项目类别: