Towards autonomous management of cardiogenic shock
迈向心源性休克的自主管理
基本信息
- 批准号:10580751
- 负责人:
- 金额:$ 16.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArtificial IntelligenceAutomationAviationAwarenessBehaviorBenchmarkingCardiacCardiogenic ShockCardiovascular ModelsCardiovascular PhysiologyCaringCessation of lifeClinicalClinical DataCognitiveComplexComputerized Medical RecordCongestive Heart FailureCritical IllnessDataData SetDatabasesDecision MakingDevicesDoseElectronic Health RecordEnvironmentEventFamilyFeedbackFunctional disorderFutureGeneral HospitalsGoalsGrowthHandHeadHeart failureHumanIntensive CareIntensive Care UnitsInterventionKnowledgeLearningLifeMassachusettsMeasurementMechanicsMethodsModelingMonitorNatureOperative Surgical ProceduresOrgan failureOutcomeOxygenPatient-Focused OutcomesPatientsPerformancePharmaceutical PreparationsPhasePhysiciansPhysiologyPoliciesPolicy AnalysisPsyche structurePsychological reinforcementPublishingQuality of CareRewardsRoboticsRoleSafetySamplingSelf-Help DevicesSuggestionSystemTechniquesTechnologyTelemetryTimeTitrationsTrainingWorkalgorithm traininganimationcardiac intensive care unitcomorbiditycomputer sciencecomputerized toolsdesigndigital healthexperiencehemodynamicsimprovedindividualized medicinelearning algorithmlearning strategypatient responsepreservationsimulationsupport toolstoolunethical
项目摘要
Project Summary
Physicians in the cardiac intensive care unit (CCU) make decisions in an increasingly data- and
knowledge- rich world, yet often they get little help. Currently, each physician makes decisions based on his or
her mental model of the patient’s physiology, together with mental predictions of the patient’s response to
intervention. This approach can lead to a range of behaviors that compromise patient outcomes, including
oversimplification of the physiology, errors due to cognitive overload, and physician to physician variability in
decision making. A computational tool equipped with quantitative knowledge of physiology, the ability to
systematically evaluate all the data, and informed by a database of past action-outcome events could aid the
physician with valuable suggestions for action.
We propose to train an algorithm to make decisions about dosing vasoactive medications and initiating
mechanical support in patients with cardiogenic shock due to decompensated heart failure. This focused set of
decisions entails calculations about the physiology that are normally performed in a physician’s head. We frame
the decision problem as optimizing cardiovascular function to preserve oxygen delivery, and we apply tools from
optimal control. Rather than hand-design a CCU controller we will use reinforcement learning (RL) techniques
to “fit” one. The field of RL has experienced explosive growth over the past few years, with notable advances in
strategic decision problems and robotics. A key challenge in the clinical environment is that the exploration phase
of learning (“trial and error”) would be unethical in real patients. A second challenge is that the availability of
patient data, while growing, is likely to be a bottleneck. We will leverage state-of-the-art model-based RL to train
an algorithm using a combination of simulation and off-policy learning from historical data. We will use a model
of cardiovascular physiology that underlies cardiac simulators in use today for the training of cardiologists.
Historical patient data will come from the Massachusetts General Hospital Clinical Data Animation Center which
has recorded real-time telemetry waveform data in addition to standard electronic medical record data from all
CCU patients spanning several years. This is one of the largest and most complete datasets of its kind. The
complexity of managing cardiogenic shock will continue to escalate as tools become more sophisticated and
patients live longer, with more extensive comorbidities. Advanced decision support tools could help tame this
complexity, improving the quality of care as well as democratizing it.
项目概要
心脏重症监护病房 (CCU) 的医生根据越来越多的数据和数据做出决策
知识丰富的世界,但他们往往得不到什么帮助。 目前,每个医生都根据自己的情况做出决定。
她对患者生理机能的心理模型,以及对患者反应的心理预测
这种方法可能会导致一系列损害患者治疗结果的行为,包括
生理学的过度简化、认知超载导致的错误以及医生之间的差异
一种具有定量生理学知识和能力的计算工具。
系统地评估所有数据,并通过过去行动结果事件的数据库提供信息,可以帮助
医生提出宝贵的行动建议。
我们建议训练一种算法来做出有关血管活性药物的剂量和启动的决策
失代偿性心力衰竭导致的心源性休克患者的机械支持。
决策需要对生理学进行计算,而这些计算通常是在医生的头脑中进行的。
决策问题是优化心血管功能以保持氧气输送,我们应用以下工具
我们将使用强化学习 (RL) 技术,而不是手动设计 CCU 控制器。
强化学习领域在过去几年中经历了爆炸性增长,在以下方面取得了显着进展。
战略决策问题和机器人技术在临床环境中的一个关键挑战是探索阶段。
对于真实的患者来说,学习(“试错”)是不道德的第二个挑战是可用性。
患者数据虽然不断增长,但很可能成为瓶颈。我们将利用最先进的基于模型的强化学习进行训练。
结合模拟和从历史数据中学习的算法我们将使用一个模型。
心血管生理学是当今用于培训心脏病专家的心脏模拟器的基础。
历史患者数据将来自麻省总医院临床数据动画中心,该中心
除了来自所有地方的标准电子病历数据之外,还记录了实时遥测波形数据
这是同类数据中最大、最完整的数据集之一。
随着工具变得更加复杂和复杂,管理心源性休克的复杂性将继续升级
患有更广泛合并症的患者寿命更长,先进的决策支持工具可以帮助解决这一问题。
复杂性,提高护理质量并使其民主化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas E. Houstis其他文献
Nicholas E. Houstis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas E. Houstis', 18)}}的其他基金
Towards autonomous management of cardiogenic shock
迈向心源性休克的自主管理
- 批准号:
10376242 - 财政年份:2021
- 资助金额:
$ 16.8万 - 项目类别:
Towards autonomous management of cardiogenic shock
迈向心源性休克的自主管理
- 批准号:
10218696 - 财政年份:2021
- 资助金额:
$ 16.8万 - 项目类别:
相似国自然基金
基于物理约束人工智能的缺资料流域山洪模拟方法研究
- 批准号:42371086
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于多模态分子影像和人工智能的结直肠癌PD-L1表达演变预测及机制研究
- 批准号:82302185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人工智能工具对预期与货币政策有效性影响的实验研究
- 批准号:72303050
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人工智能的微结构光纤研究
- 批准号:62375013
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
基于人工智能集成组学多维信息探究地黄饮子调控“星形胶质细胞-神经元耦合失衡”治疗AD的益肾填髓作用
- 批准号:82374422
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
$ 16.8万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 16.8万 - 项目类别:
Automated Planning and Robotic Delivery of Needle Biopsies under CT Image Guidance
CT 图像引导下穿刺活检的自动规划和机器人传送
- 批准号:
10619755 - 财政年份:2023
- 资助金额:
$ 16.8万 - 项目类别: