Regulating stress response to promote postnatal beta-cell function and survival
调节应激反应以促进产后 β 细胞功能和存活
基本信息
- 批准号:10580784
- 负责人:
- 金额:$ 48.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:5&apos Flanking RegionATF6 geneAdultAffectAnabolismApoptoticAttenuatedBeta CellCell DeathCell LineCell ProliferationCell SurvivalCell TransplantationCell physiologyCellsCessation of lifeChIP-seqCompensationComplexDevelopmentDiabetes MellitusDiseaseDown-RegulationFailureFamilyFunctional disorderGene ActivationGene ExpressionGenesGenetic TranscriptionGlucoseGlucose IntoleranceGoalsHeat-Shock ResponseHistone DeacetylaseHistone DeacetylationHistonesHomeostasisHumanHyperglycemiaHypoglycemiaImmunodeficient MouseIn VitroInsulinInsulin ResistanceInterruptionIslet CellIslets of LangerhansKnowledgeLeadLinkMediatingMessenger RNAMetabolicMetabolic stressMitochondriaModelingMolecularMolecular TargetMusMyelinNon-Insulin-Dependent Diabetes MellitusObesityOpen Reading FramesOutputOxidative StressPeripheralPersonsPhysiologyProcessProductionProinsulinProteinsProteomicsPublishingReactive Oxygen SpeciesRegulationRepressionRoleStressStructure of beta Cell of isletTestingTissuesTranslationsUp-RegulationWorkloadbiological adaptation to stressblood glucose regulationderepressiongain of functiongene productgene repressionglucose metabolismimprovedin vivoin vivo evaluationinsulin secretionisletislet stem cellsknock-downloss of functionnovelparalogous genepostnatalpreventrecruitresponsestressortranscription factortranscriptome sequencing
项目摘要
Workload-induced pancreatic islet β-cell dysfunction, loss-of identity, and cell death, commonly known as
β-cell failure, is the hallmark of type 2 diabetes (T2D). This disease usually starts with obesity-induced insulin
resistance, when peripheral tissues need higher levels of circulating insulin for glucose storage and usage.
Islet β-cells compensate by expanding β-cell mass and increasing insulin output per cell, which requires
upregulated insulin biosynthesis and oxidative glucose metabolism. These produce unfolded proinsulin in the
ER and reactive oxygen species (ROS) in mitochondria, which at high levels can decimate β cells. Thus, β
cells constantly activate stress response by stimulating the activity of several early-stage SRGs, including Atf6,
IRE1, PERK, Hsf1, and Nurf2, to lead to: 1) attenuated overall protein translation; 2) enhanced translation of
some SRG mRNAs that have special features such as upstream open reading frame (uORF) 5’ to the main
ORF; 3) upregulated expression of some late-stage SRGs. The overall effect of these responses is to remove
unfolded proteins/ROS for proteomic homeostasis and sustainable β-cell function. However, over-activating
some late-stage SRGs such as Atf4 and Hsps induces β-cell failure by turning on some proapoptotic genes or
by exceedingly lowering overall protein translation. Thus, it is imperative for β-cells to limit the levels of failure-
causing SRGs for sustainable high-level of insulin output. An emerging model from our recent published
findings is that a transcriptional complex containing Myt TFs and Sin3 can selectively repressing these failure-
causing SRGs. Myt TFs are a family of three myelin transcription factors (Myt1, 2, and 3) highly expressed in
islet cells. Sin3, including Sin3a and Sin3b, is a coregulator that represses transcription by recruiting histone
deacetylases (HDACs) to modify histones. We showed that Myt TFs and Sin3 can form a transcription complex
in β cells. Inactivating these genes in mouse and human β cells causes cell dysfunction and/or death while
overactivating late-stage β-cell-failure-causing SRGs but not early stage SRGs. Intriguingly, Myt TFs,
particularly Myt3, is induced by obesity-related stressors in mouse and human β cells, likely mediated by an
uORF in 5’ flanking region of Myt3 mRNA. Importantly, MYT3 down-regulation accompanies human β-cell
failure in T2D development. Our overarching hypothesis is that the stress-responsive Myt TFs, particularly
Myt3, promote -cell function/survival by repressing late-stage SRGs via Sin3-mediated histone de-acetylation
under both normal physiology and metabolic stress. Aim 1 will establish how MYT TFs repress SRG
expression in a human β cell line and how manipulating MYT-TF levels will affect primary human β-cell
function and survival. Aim 2 will define how metabolic stressors up-regulate Myt3 production and how this
upregulation enable β-cell compensation under metabolic stress. We expect to uncover a tunable mechanism
that can be explored for preventing/delaying β-cell failure and T2D.
工作负荷引起的胰岛 β 细胞功能障碍、身份丧失和细胞死亡,通常称为
β 细胞衰竭是 2 型糖尿病 (T2D) 的标志,这种疾病通常始于肥胖引起的胰岛素。
当外周组织需要更高水平的循环胰岛素来储存和使用葡萄糖时,就会产生抵抗力。
胰岛 β 细胞通过扩大 β 细胞质量和增加每个细胞的胰岛素输出来进行补偿,这需要
上调胰岛素生物合成和氧化葡萄糖代谢,在体内产生未折叠的胰岛素原。
线粒体中的 ER 和活性氧 (ROS),高水平时可以杀死 β 细胞。
细胞通过刺激几个早期 SRG 的活性不断激活应激反应,包括 Atf6、
IRE1、PERK、Hsf1 和 Nurf2,导致:1) 整体蛋白质翻译减弱;2) 蛋白质翻译增强;
一些 SRG mRNA 具有特殊功能,例如主链 5’ 端的上游开放阅读框 (uORF)
ORF;3) 一些晚期 SRG 的表达上调。这些反应的总体效果是消除。
未折叠的蛋白质/ROS 用于蛋白质组稳态和可持续的 β 细胞功能。
一些晚期 SRG,例如 Atf4 和 Hsps,通过开启一些促凋亡基因或诱导 β 细胞衰竭
因此,β细胞必须限制失败的水平。
SRG 导致可持续的高水平胰岛素输出。我们最近发表的一个新兴模型。
研究结果表明,包含 Myt TF 和 Sin3 的转录复合物可以选择性地抑制这些失败。
引起 SRG 的 Myt TF 是三个髓磷脂转录因子(Myt1、2 和 3)的家族,在
Sin3,包括 Sin3a 和 Sin3b,是一种通过招募组蛋白来抑制转录的共调节因子。
我们发现 Myt TF 和 Sin3 可以形成转录复合物。
使小鼠和人类 β 细胞中的这些基因失活会导致细胞功能障碍和/或死亡。
过度激活导致晚期 β 细胞衰竭的 SRG,但不会过度激活早期 SRG,有趣的是,Myt TF,
特别是 Myt3,是由小鼠和人类 β 细胞中与肥胖相关的应激源诱导的,可能是由
Myt3 mRNA 5' 侧翼区域中的 uORF 重要的是,MYT3 下调伴随着人类 β 细胞。
我们的总体假设是压力反应性 Myt TF,尤其是 T2D 发育的失败。
Myt3,通过 Sin3 介导的组蛋白去乙酰化抑制晚期 SRG,从而促进 细胞功能/存活
目标 1 将确定 MYT TF 如何抑制 SRG。
人 β 细胞系中的表达以及操纵 MYT-TF 水平将如何影响原代人 β 细胞
目标 2 将定义代谢应激源如何上调 Myt3 的产生以及这是如何进行的。
我们期望发现一种可调节的机制。
可以探索预防/延缓 β 细胞衰竭和 T2D 的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guoqiang Gu其他文献
Guoqiang Gu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guoqiang Gu', 18)}}的其他基金
Regulating stress response to promote postnatal beta-cell function and survival
调节应激反应以促进产后 β 细胞功能和存活
- 批准号:
10366079 - 财政年份:2021
- 资助金额:
$ 48.71万 - 项目类别:
Regulating stress response to promote postnatal beta-cell function and survival
调节应激反应以促进产后 β 细胞功能和存活
- 批准号:
10199281 - 财政年份:2021
- 资助金额:
$ 48.71万 - 项目类别:
The DNA methylome-based regulation of functional beta-cell mass
基于 DNA 甲基化组的功能性 β 细胞群调节
- 批准号:
10415123 - 财政年份:2020
- 资助金额:
$ 48.71万 - 项目类别:
The DNA methylome-based regulation of functional beta-cell mass
基于 DNA 甲基化组的功能性 β 细胞群调节
- 批准号:
10205058 - 财政年份:2020
- 资助金额:
$ 48.71万 - 项目类别:
The DNA methylome-based regulation of functional beta-cell mass
基于 DNA 甲基化组的功能性 β 细胞群调节
- 批准号:
10033594 - 财政年份:2020
- 资助金额:
$ 48.71万 - 项目类别:
The DNA methylome-based regulation of functional beta-cell mass
基于 DNA 甲基化组的功能性 β 细胞群调节
- 批准号:
10647908 - 财政年份:2020
- 资助金额:
$ 48.71万 - 项目类别:
The DNA methylome-based regulation of functional beta-cell mass
基于 DNA 甲基化组的功能性 β 细胞群调节
- 批准号:
10287569 - 财政年份:2020
- 资助金额:
$ 48.71万 - 项目类别:
Microtubule Regulation of Pancreatic Beta Cell Function and Diabetes
胰腺β细胞功能和糖尿病的微管调节
- 批准号:
10366019 - 财政年份:2016
- 资助金额:
$ 48.71万 - 项目类别:
Microtubule Regulation of Pancreatic Beta Cell Function and Diabetes
胰腺β细胞功能和糖尿病的微管调节
- 批准号:
9229554 - 财政年份:2016
- 资助金额:
$ 48.71万 - 项目类别:
Microtubule Regulation of Pancreatic Beta Cell Function and Diabetes
胰腺β细胞功能和糖尿病的微管调节
- 批准号:
10597141 - 财政年份:2016
- 资助金额:
$ 48.71万 - 项目类别:
相似海外基金
Single molecule detection of L1 insertions and intermediates
L1 插入和中间体的单分子检测
- 批准号:
10662586 - 财政年份:2023
- 资助金额:
$ 48.71万 - 项目类别:
A CRSIPR/dCas9-Targeted Histone Demethylation Induces GAA repeat contraction
CRSIPR/dCas9 靶向组蛋白去甲基化诱导 GAA 重复收缩
- 批准号:
10649032 - 财政年份:2023
- 资助金额:
$ 48.71万 - 项目类别:
The role of transcription factor MEOX2 in lipofibroblast function during alveolarization
转录因子 MEOX2 在肺泡化过程中脂肪成纤维细胞功能中的作用
- 批准号:
10385997 - 财政年份:2022
- 资助金额:
$ 48.71万 - 项目类别:
Human genetic supplementation without donor DNA or a DNA break
无需供体 DNA 或 DNA 断裂的人类基因补充
- 批准号:
10532612 - 财政年份:2022
- 资助金额:
$ 48.71万 - 项目类别:
The role of transcription factor MEOX2 in lipofibroblast function during alveolarization
转录因子 MEOX2 在肺泡化过程中脂肪成纤维细胞功能中的作用
- 批准号:
10598463 - 财政年份:2022
- 资助金额:
$ 48.71万 - 项目类别: