Validating a new, translatable biomaterial for healing critical bone defects
验证一种用于治疗严重骨缺损的新型可翻译生物材料
基本信息
- 批准号:10580837
- 负责人:
- 金额:$ 19.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3D PrintAccelerationAddressAffectAllogenicAmericanBiocompatible MaterialsBiodegradationBiomimeticsBlood VesselsBone DevelopmentBone GrowthBone RegenerationClinicalClinical TrialsCompressive StrengthDefectDevelopmentDrug Delivery SystemsElectroplatingEngineeringExcisionFormulationFrequenciesFundingFutureGoalsGrainGrowth FactorHealthcareHumanImplantInfectionLifeLiteratureMalignant NeoplasmsMechanicsMedicineMetalsMethodsMineralsModelingModulusMothersMotivationNatureNutrientOrthopedicsOsseointegrationOsteogenesisOutcomeOutcome StudyPatientsPhasePilot ProjectsPorosityPowder dose formProcessPropertyRepeat SurgeryResearchResearch PersonnelSamplingSheepStructureTestingThinnessTissue EngineeringTrace ElementsTranslatingTraumaVariantVascularizationWorkbonebone healingcalcium phosphateclinical translationdensitydesigneconomic costexperiencefabricationfunctional outcomeshealingimprovedin vivolimb lossmechanical propertiesmineralizationosteogenicremediationsample fixationscaffoldstandard caresuccesstranslation to humanstranslational potentialtricalcium phosphatevirtualwasting
项目摘要
PROJECT SUMMARY/ABSTRACT
Poor healing of large bone defects remains one of the biggest challenges in human orthopedic medicine,
affecting more than 1.5 million Americans per year and often leading to infections and other clinical
complications, reoperations, poor functional outcomes, and ultimately, all too often, limb loss. The current gold-
standard treatment is large metal plate fixation, which is prone to infection and remains in the patient’s body for
life. Thus, there is a critical need to address this challenge in human medicine. Researchers have been working
on tissue engineered solutions for decades, using scaffolds made of tri-calcium-phosphate (TCP) due to their
excellent bioactivity (osteoinduction, osteoconduction and osseointegration), tunable degradation rate and
promising drug delivery capabilities. However, despite excellent bone regeneration properties, these scaffolds
are not strong enough to support significant loads, especially in critical defects. A viable solution to healing critical
defects requires fast, natural bone growth, vascular development, and mechanical integrity to support loads while
the new bone grows. Numerous trace elements that are found in bone, such as Zn, Mg, Sr, Si and Mn, have
been added to TCP scaffolds (a.k.a. “doping”) to improve mechanical properties and bioactivity, and accelerate
new bone formation. Many other trace elements may also play a role in bone development but have yet to be
explored. Unfortunately, an intractable combination of studies is required when one considers all combinations
of trace elements found in bone and ideal concentrations of each. No amount of funding will be enough to
evaluate all these combinations in bone healing. This virtually unlimited set of variants leads to a hypothesis that
natural bone may already contain the ideal mineral composition, after many millions of years of trial and error.
Rather than trying to re-engineer the mineral composition of bone, this proposal seeks to fabricate and fully
characterize bone regeneration scaffolds composed of naturally derived bone powder and test these
scaffolds in a pilot ovine in vivo study. We lean on mother nature to provide a possible solution. The novelty
of our approach is that we’re testing a new biomimetic biomaterial. No study to date has tested naturally derived
bone mineral in bone regeneration scaffolds. Our approach depends on a naturally derived material that would
be associated with lower regulatory burden, therefore, should be easier to translate to human medicine. We
hope to extend this work to develop similar methods using naturally derived human bone mineral for healing
human critical defects. If successful, this project could enable higher porosity structures to accelerate bioactivity
and vascularization, both of which would have a significant impact on critical defect bone healing. Our long-term
goal is to enable removal of all metal fixation, leaving only endogenous bone as we expect our naturally derived
biomaterials to be replaceable by native bone as our future work accelerates bone growth.
项目概要/摘要
大骨缺损的愈合不良仍然是人类骨科医学面临的最大挑战之一,
每年影响超过 150 万美国人,并经常导致感染和其他临床症状
并发症、再次手术、功能不良,最终常常导致肢体丧失。
标准治疗方法是大金属板固定,容易发生感染,并会留在患者体内
因此,人类医学迫切需要解决这一挑战。
数十年来一直致力于组织工程解决方案,使用磷酸三钙 (TCP) 制成的支架,因为它们具有以下优点:
优异的生物活性(骨诱导、骨传导和骨整合)、可调节的降解速率和
然而,尽管这些支架具有出色的骨再生特性,但其药物输送能力却很有前景。
强度不足以支撑重大负载,特别是在严重缺陷中。修复关键缺陷的可行解决方案。
缺陷需要快速、自然的骨骼生长、血管发育和机械完整性来支撑负载,同时
新骨生长过程中含有多种微量元素,如锌、镁、锶、硅和锰。
TCP 支架中添加了(又名“掺杂”),以提高机械性能和生物活性,并加速
许多其他微量元素也可能在骨骼发育中发挥作用,但尚未得到证实。
不幸的是,当考虑所有组合时,需要进行棘手的研究组合。
骨骼中发现的微量元素以及每种元素的理想浓度无论有多少资金都不足以解决这一问题。
评估骨骼愈合中的所有这些组合,这组几乎无限的变体导致了一个假设:
经过数百万年的反复试验,天然骨骼可能已经含有理想的矿物质成分。
该提案不是试图重新设计骨骼的矿物质成分,而是寻求制造并充分
表征由天然骨粉组成的骨再生支架并进行测试
我们依靠大自然提供了一种可能的解决方案。
我们的方法是,我们正在测试一种新的仿生生物材料,迄今为止还没有研究测试过天然衍生的生物材料。
骨再生支架中的骨矿物质我们的方法依赖于天然来源的材料。
与较低的监管负担相关,因此应该更容易转化为人类医学。
希望扩展这项工作,开发类似的方法,使用天然来源的人体骨矿物质进行治疗
如果成功,该项目可以实现更高孔隙率的结构,以加速生物活性。
和血管化,这两者都会对关键缺损骨的长期愈合产生重大影响。
目标是能够去除所有金属固定,只留下内源性骨,正如我们所期望的自然衍生的那样
随着我们未来的工作加速骨骼生长,生物材料将被天然骨骼替代。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robocasting of Ceramic Fischer-Koch S Scaffolds for Bone Tissue Engineering.
- DOI:10.3390/jfb14050251
- 发表时间:2023-04-30
- 期刊:
- 影响因子:4.8
- 作者:Baumer, Vail;Gunn, Erin;Riegle, Valerie;Bailey, Claire;Shonkwiler, Clayton;Prawel, David
- 通讯作者:Prawel, David
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David A Prawel其他文献
David A Prawel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David A Prawel', 18)}}的其他基金
Validating a new, translatable biomaterial for healing critical bone defects
验证一种用于治疗严重骨缺损的新型可翻译生物材料
- 批准号:
10432592 - 财政年份:2022
- 资助金额:
$ 19.41万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Multi-parametric anthropomorphic MRI Phantoms technology for reliable and reproducible structural and quantitative MRI
多参数拟人 MRI Phantoms 技术可实现可靠且可重复的结构和定量 MRI
- 批准号:
10729161 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Indiana Clinical and Translational Sciences Institute
印第安纳临床与转化科学研究所
- 批准号:
10622172 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Single Stage Surgical Intervention for Treatment of Severe Traumatic Brain Injury
治疗严重创伤性脑损伤的一期手术干预
- 批准号:
10776143 - 财政年份:2022
- 资助金额:
$ 19.41万 - 项目类别:
3D printing glass micro-objectives for ultrathin endoscope
3D打印超薄内窥镜玻璃显微物镜
- 批准号:
10544780 - 财政年份:2022
- 资助金额:
$ 19.41万 - 项目类别:
Developing near-infrared responsive liquid crystal elastomers for an adjustable pulmonary artery band
开发用于可调节肺动脉带的近红外响应液晶弹性体
- 批准号:
10778190 - 财政年份:2022
- 资助金额:
$ 19.41万 - 项目类别: