Bayesian Network-Based Integrative Genomics Methods for Precision Medicine
基于贝叶斯网络的精准医学综合基因组学方法
基本信息
- 批准号:10577871
- 负责人:
- 金额:$ 43.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAreaBayesian NetworkBiologicalBiological FactorsBiological ProcessCancer PatientCancer cell lineCell LineCharacteristicsClinicalClinical ResearchClustered Regularly Interspaced Short Palindromic RepeatsCodeColorectal CancerCommunitiesComplexComputer softwareConsensusDNA Sequence AlterationDataData SetDiseaseDrug TargetingEncyclopediasEpigenetic ProcessFollow-Up StudiesFormulationFree WillGenesGeneticGenomicsGraphHeterogeneityImmuneIndividualKnowledgeLettersLinkLiteratureMalignant NeoplasmsMediationMediatorMessenger RNAMethodsModelingModernizationMolecularMutationNetwork-basedOncogenicPathway interactionsPatient SelectionPatientsPharmaceutical PreparationsPhenotypePrecision therapeuticsPrediction of Response to TherapyProcessResearchResearch PersonnelResource SharingRunningStatistical MethodsStructureTechniquesTestingThe Cancer Genome AtlasTherapeuticTrainingUniversity of Texas M D Anderson Cancer CenterValidationWorkactive methodanalytical methodarmcancer subtypesclinical translationcohortcolon cancer patientsdata sharinggenomic datagenomic platformimproved outcomeindividual patientlarge datasetsmolecular subtypesnetwork modelsnew therapeutic targetnovelpersonalized medicineprecision medicinepreclinical studyrare cancerresponsestatistical learningsuccesstargeted treatmenttherapeutic targettooltumorusabilityweb portal
项目摘要
Project Summary/Abstract
Modern multi-platform genomic data sets contain substantial molecular information potentially useful for discovering
new precision therapeutic strategies. Integration across multi-platform data and across genes using network-based
models is a key to extracting mechanistic molecular information embedded in these data. In this proposal, we develop
integrative network-based methods that ll gaps in existing literature. They will be used to identify key pathways for
a given disease and its subtypes, nd key upstream regulators of these pathways and determine which appear to be
causal, construct pathway signatures potentially usable for patient selection, and identify factors modulating pathway
associations. While our methods will be applicable to any disease setting, our initial focus will be to use multi-platform
genomic data sets to provide a deep molecular characterization of four recently discovered consensus molecular subtypes
(CMS) of colorectal cancer (CRC) to arm our biomedical and clinical collaborators with knowledge to devise and test
new precision therapeutic strategies targeting these subtypes. For these purposes, we propose the following aims:
Speci c Aim 1: We will devise a novel model formulation regressing pathway scores on upstream genetic and epigenetic
factors to identify a sparse set of potential pathway drivers. We will identify characteristic pathways for each CMS and
for each pathway identify potential drivers that our biomedical collaborators will functionally validate via CRISPR and
identify potential matching drug targets. We will also develop novel Bayesian hierarchically linked regression models
(BLINK) that will determine which cancers share common pathway drivers and thus are candidates for sharing a common
targeted therapy, while increasing power for discovery of pathway drivers for rare cancers.
Speci c Aim 2: We will develop network mediation analysis approaches to discover putative causal network edges
in multi-layered graphs of multi-platform genomic data. We will use these methods to more deeply characterize the
networks underlying key CMS-characteristic pathways and determine which potential pathway drivers appear to be
causal, and which mediators are predictive of response to therapy. From these networks, we will devise methods to
construct pathway signatures integrating multi-platform molecular information to provide a single-number, patient-
speci c summary of pathway activity potentially useful for patient selection for precision therapeutics.
Speci c Aim 3: We will develop novel Bayesian network regression methods for undirected and multi-layer networks
that identify heterogeneous network structure varying linearly or nonlinearly across patient-speci c covariates. We
will apply these methods to key networks identi ed for CRC data to discover how these networks vary across various
covariates, including subtypes (CMS), biological factors (immune in ltration), and clinical response.
Successful completion of this work will produce a broad set of rigorous tools for integrative and network modeling of
multi-platform genomic data, and will provide our CRC collaborators with a short list of key CMS-speci c pathways and
drivers for functional validation and clinical translation via CMS-based precision therapeutics. Our dissemination efforts
will include software for our methods and Shiny apps for exploring biological underpinnings of CRC.
项目摘要/摘要
现代的多平台基因组数据集包含可用于发现的大量分子信息
新的精确理论策略。使用基于网络的多平台数据和基因跨基因集成
模型是提取这些数据中嵌入的机械分子信息的关键。在此提案中,我们发展
基于网络的基于网络的方法,在现有文献中差异。它们将用于识别关键途径
给定疾病及其亚型,这些途径的关键上游调节剂,并确定哪个似乎是
因果,构造途径签名可能可用于患者选择,并确定调节途径的因素
协会。虽然我们的方法适用于任何疾病,但我们最初的重点是使用多平台
基因组数据集可提供四个最近发现的共有分子亚型的深层分子表征
(CMS)结直肠癌(CRC),武装我们的生物医学和临床合作者,以设计和测试
针对这些亚型的新的精确理论策略。为了这些目的,我们提出以下目的:
特定C AIM 1:我们将设计一个新型模型,该模型在上游遗传和表观遗传学上得分进行回归途径
确定一组稀疏的潜在途径驱动因素的因素。我们将确定每个CM和
对于每种途径,确定我们的生物医学合作者将通过CRISPR和
确定潜在的匹配药物靶标。我们还将开发新颖的贝叶斯分层链接回归模型
(眨眼)将确定哪些癌症共享通用途径驱动因素,因此是共享共同的候选人
有针对性的疗法,同时增加了为罕见癌症发现途径驱动因素的功率。
特定C AIM 2:我们将开发网络中介分析方法以发现推定的因果网络边缘
在多平台基因组数据的多层图中。我们将使用这些方法更深入地描述
钥匙CMS特征途径的基础网络,并确定哪些潜在途径驱动程序似乎是
因果关系,哪些介体可以预测对治疗的反应。从这些网络中,我们将设计方法
构建途径签名,集成多平台分子信息,以提供单数,患者 -
途径c活动的特定摘要可能对患者选择精确治疗可能有用。
Speci C AIM 3:我们将开发新颖的贝叶斯网络回归方法,用于无向和多层网络
在患者特异性协变量中,识别异质网络结构线性或非线性变化。我们
将这些方法应用于为CRC数据标识的关键网络,以发现这些网络在各种方面如何变化
协变量,包括亚型(CMS),生物学因素(LTRATION中的免疫)和临床反应。
这项工作的成功完成将产生一系列严格的工具,用于集成和网络建模
多平台基因组数据,将为我们的CRC合作者提供关键CMS规格途径的简短列表和
通过基于CMS的精确疗法进行功能验证和临床翻译的驱动因素。我们的传播效果
将包括用于我们方法的软件和用于探索CRC生物基础的闪亮应用程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Veerabhadran Baladandayuthapani其他文献
Veerabhadran Baladandayuthapani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Veerabhadran Baladandayuthapani', 18)}}的其他基金
Proteomic-based integrated subject-specific networks in cancer
癌症中基于蛋白质组学的综合主题特定网络
- 批准号:
9506027 - 财政年份:2018
- 资助金额:
$ 43.36万 - 项目类别:
Integrative methods for high-dimensional genomics data
高维基因组数据的整合方法
- 批准号:
8323898 - 财政年份:2011
- 资助金额:
$ 43.36万 - 项目类别:
Integrative methods for high-dimensional genomics data
高维基因组数据的整合方法
- 批准号:
8685000 - 财政年份:2011
- 资助金额:
$ 43.36万 - 项目类别:
Integrative methods for high-dimensional genomics data
高维基因组数据的整合方法
- 批准号:
8504822 - 财政年份:2011
- 资助金额:
$ 43.36万 - 项目类别:
Integrative methods for high-dimensional genomics data
高维基因组数据的整合方法
- 批准号:
8162065 - 财政年份:2011
- 资助金额:
$ 43.36万 - 项目类别:
相似国自然基金
跨区域调水工程与区域经济增长:效应测度、机制探究与政策建议
- 批准号:72373114
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
农产品区域公用品牌地方政府干预机制与政策优化研究
- 批准号:72373068
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
新型城镇化与区域协调发展的机制与治理体系研究
- 批准号:72334006
- 批准年份:2023
- 资助金额:167 万元
- 项目类别:重点项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
多时序CT联合多区域数字病理早期预测胃癌新辅助化疗抵抗的研究
- 批准号:82360345
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Gene regulatory network control of olfactory cortex cell type specification
嗅觉皮层细胞类型规范的基因调控网络控制
- 批准号:
10656692 - 财政年份:2023
- 资助金额:
$ 43.36万 - 项目类别:
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
- 批准号:
10707881 - 财政年份:2022
- 资助金额:
$ 43.36万 - 项目类别: