Pathomics biomarkers for stratification of clear cell kidney cancers
用于透明细胞肾癌分层的病理组学生物标志物
基本信息
- 批准号:10578582
- 负责人:
- 金额:$ 21.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-06 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:Adipose tissueAdjuvantAdjuvant TherapyAlgorithmsArchitectureBiological MarkersBlood VesselsCancer PrognosisCellular MorphologyClassificationClear CellClear cell renal cell carcinomaClinicalClinical Practice GuidelineClinical TrialsCorrelation StudiesDataDetectionDiagnosisDisease ProgressionDisease-Free SurvivalFatty acid glycerol estersFundingFutureGrantGrowthGuidelinesHigh-Risk CancerHistologicHistologyImmunotherapyInvadedMachine LearningMalignant NeoplasmsManualsMapsMetastatic Neoplasm to Lymph NodesModelingMorphologyNational Comprehensive Cancer NetworkNecrosisNephrectomyNuclear GradeOperative Surgical ProceduresPathologicPathologistPathologyPatient SelectionPatient-Focused OutcomesPatientsPatternPerformancePharmacotherapyPhase III Clinical TrialsPractice GuidelinesProbabilityPrognosisPrognostic MarkerRecommendationRecurrenceRecurrent Malignant NeoplasmRecurrent diseaseRecurrent tumorRegional CancerRenal Cell CarcinomaRenal carcinomaRiskRisk AssessmentSelection CriteriaSlideSourceStagingStratificationSystemic TherapyTestingThe Cancer Genome AtlasThrombusTissue imagingTissuesTrainingTumor Cell InvasionTumor ExpansionTumor TissueTumor stageUniversitiesUtahVenousWorkanti-PD-L1 antibodiesbiomarker developmentcancer biomarkerscancer diagnosiscancer recurrencecancer surgerycancer typecohortcomputer generatedconvolutional neural networkdigitaldraining lymph nodeexperiencehigh riskimprovedinnovationkidney surgerylarge datasetsnovelpathology imagingperformance testspredictive markerpredictive modelingprognosticprognostic assaysprognosticationrandom forestrisk stratificationside effecttissue biomarkerstumortumor growthtumor progression
项目摘要
Project Summary
Pathologic attributes of cancers, such as histology and tumor growth patterns are not quantitatively assessed
to date. In every cancer type these parameters effect patient outcomes and are included in risk models of
tumor recurrence and overall survival. Algorithms using machine learning and convolutional neural networks
allow us to quantify pathology and develop Pathomics biomarkers. Here, we propose to obtain pathomics
biomarkers of cancer recurrence/progression that enumerate histology growth patterns (HGPs) in clear cell
renal cell cancer (ccRCC). ccRCC is the most common subtype of kidney cancer. In its localized stage, it is
treated by nephrectomy. However, about 30% of patients experience disease progression after surgery and
may benefit from adjuvant treatment. Deciding whether or not treatment is warranted requires identifying
patients who are at a high risk of recurrence. Here, we hypothesize that quantitative biomarkers will improve
the risk assessment of patients with ccRCC and propose to develop computer-generated features of tumor
growth patterns. We previously defined 13 HGPs and demonstrated their ability to predict overall survival in
patients treated for ccRCC. Distinctive features for each HGP will be generated and validated using
frameworks of convolutional neural networks that produce probabilities of expression across cancer regions.
Further, the distribution of probabilities will be used to obtain biomarkers of expression of each HGP. Using
parametric and non-parametric models, HGP-biomarkers will be examined for their association with tumor
stage and local mechanisms of ccRCC progression, such as formation of tumor thrombi, regional lymph node
metastases or invasion into perinephric adipose tissues. The performance of each algorithm in the project will
be evaluated. Altogether, biomarkers developed in this project will provide a starting point to select patients
with ccRCC for adjuvant treatment after surgery.
项目摘要
癌症的病理属性,例如组织学和肿瘤生长模式,未经定量评估
迄今为止。在每种癌症类型中,这些参数都会影响患者的结果,并包括在风险模型中
肿瘤复发和整体生存。使用机器学习和卷积神经网络的算法
允许我们量化病理学并发展致病生物标志物。在这里,我们建议获得病原体
在透明细胞中列举组织学生长模式(HGP)的癌症复发/进展的生物标志物
肾细胞癌(CCRCC)。 CCRCC是肾癌最常见的亚型。在本地阶段,是
通过肾切除术治疗。但是,大约30%的患者经历了手术后的疾病进展,
辅助治疗可能会受益。确定是否需要治疗需要识别
重复发生高风险的患者。在这里,我们假设定量生物标志物将改善
CCRCC患者的风险评估,并提议开发肿瘤的计算机生成特征
生长模式。我们以前定义了13个HGP,并证明了他们预测总体生存的能力
接受CCRCC治疗的患者。每个HGP的独特功能将被生成和验证
卷积神经网络的框架,在癌症地区产生表达概率。
此外,概率的分布将用于获得每个HGP的表达生物标志物。使用
参数和非参数模型,将检查HGP生物标志物的与肿瘤的关联
CCRCC进展的阶段和局部机制,例如肿瘤血栓形成,区域淋巴结
转移或侵袭直接脂肪组织。项目中每种算法的性能将
进行评估。总共在该项目中开发的生物标志物将为选择患者提供一个起点
手术后用CCRCC进行辅助治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BEATRICE S KNUDSEN其他文献
BEATRICE S KNUDSEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BEATRICE S KNUDSEN', 18)}}的其他基金
In vivo effects of sulforaphane supplementation on normal human prostate
补充萝卜硫素对正常人前列腺的体内影响
- 批准号:
8095726 - 财政年份:2009
- 资助金额:
$ 21.57万 - 项目类别:
In vivo effects of sulforaphane supplementation on normal human prostate
补充萝卜硫素对正常人前列腺的体内影响
- 批准号:
7579160 - 财政年份:2009
- 资助金额:
$ 21.57万 - 项目类别:
Clinical Specimen Management and Characterization Core
临床样本管理和表征核心
- 批准号:
7727537 - 财政年份:2009
- 资助金额:
$ 21.57万 - 项目类别:
In vivo effects of sulforaphane supplementation on normal human prostate
补充萝卜硫素对正常人前列腺的体内影响
- 批准号:
8295990 - 财政年份:2009
- 资助金额:
$ 21.57万 - 项目类别:
In vivo effects of sulforaphane supplementation on normal human prostate
补充萝卜硫素对正常人前列腺的体内影响
- 批准号:
8469006 - 财政年份:2009
- 资助金额:
$ 21.57万 - 项目类别:
In vivo effects of sulforaphane supplementation on normal human prostate
补充萝卜硫素对正常人前列腺的体内影响
- 批准号:
8069167 - 财政年份:2009
- 资助金额:
$ 21.57万 - 项目类别:
In vivo effects of sulforaphane supplementation on normal human prostate
补充萝卜硫素对正常人前列腺的体内影响
- 批准号:
7898954 - 财政年份:2009
- 资助金额:
$ 21.57万 - 项目类别:
Tissue Lysates for Studies of Protein Phosphorylation
用于蛋白质磷酸化研究的组织裂解物
- 批准号:
7503182 - 财政年份:2008
- 资助金额:
$ 21.57万 - 项目类别:
Tissue Lysates for Studies of Protein Phosphorylation
用于蛋白质磷酸化研究的组织裂解物
- 批准号:
7684191 - 财政年份:2008
- 资助金额:
$ 21.57万 - 项目类别:
Clinical Specimen Management and Characterization Core
临床样本管理和表征核心
- 批准号:
8380131 - 财政年份:
- 资助金额:
$ 21.57万 - 项目类别:
相似国自然基金
肿瘤微环境多层次调控的功能化纳米佐剂用于增强膀胱癌放疗疗效的机制研究
- 批准号:82303571
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向FPPS的双磷酸疫苗佐剂的开发
- 批准号:82341040
- 批准年份:2023
- 资助金额:100 万元
- 项目类别:专项基金项目
双重生物响应性自佐剂聚多肽载体构建高效mRNA癌症疫苗
- 批准号:52373299
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新型免疫调节复合佐剂的机制研究及在疫苗开发中的应用
- 批准号:82341039
- 批准年份:2023
- 资助金额:95 万元
- 项目类别:专项基金项目
皮内接种抗原佐剂复合疫苗跨器官诱导呼吸道黏膜免疫反应
- 批准号:82341042
- 批准年份:2023
- 资助金额:100 万元
- 项目类别:专项基金项目
相似海外基金
Metabolic reprogramming of the tumor microenvironment and therapy resistance
肿瘤微环境的代谢重编程和治疗抵抗
- 批准号:
10683721 - 财政年份:2021
- 资助金额:
$ 21.57万 - 项目类别:
Regenerative Lipid Mediators for the Management of Severe Burn Wounds
用于治疗严重烧伤创面的再生脂质介质
- 批准号:
10576811 - 财政年份:2020
- 资助金额:
$ 21.57万 - 项目类别:
Regenerative Lipid Mediators for the Management of Severe Burn Wounds
用于治疗严重烧伤创面的再生脂质介质
- 批准号:
10350655 - 财政年份:2020
- 资助金额:
$ 21.57万 - 项目类别:
A combination therapy for interventional treatment of triple-negative breast cancer
三阴性乳腺癌介入治疗的联合疗法
- 批准号:
9813371 - 财政年份:2019
- 资助金额:
$ 21.57万 - 项目类别:
Promoting Muscle Regeneration through Adipose Signaling
通过脂肪信号促进肌肉再生
- 批准号:
9981629 - 财政年份:2019
- 资助金额:
$ 21.57万 - 项目类别: