Elucidating the molecular mechanisms behind human neurodevelopmental disorders using brain organoids
利用脑类器官阐明人类神经发育障碍背后的分子机制
基本信息
- 批准号:10574589
- 负责人:
- 金额:$ 71.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-16 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnatomyAnticonvulsantsAppearanceBrainBrain regionCalciumCellsComplexCouplingCulture TechniquesDNA Sequence AlterationDefectDevelopmentDiseaseDisease modelElectrophysiology (science)EmbryoExhibitsFrequenciesFunctional disorderGene MutationGenesGoalsGrowthHigh Frequency OscillationHumanImageLinkMethodsMethyl-CpG-Binding Protein 2MicrocephalyModelingMolecularMosaicismMutationNatureNervous System PhysiologyNeurodevelopmental DisorderNeurologicNeuronal DysfunctionNeuronsNeurophysiology - biologic functionOrganoidsPathologicPathologyPathway interactionsPatientsPhenotypePopulationReportingRett SyndromeSCN8A geneSamplingSeizuresSeveritiesSliceStructural defectStructureSymptomsSyndromeSystemTestingTherapeuticVariantWorkX ChromosomeZika Virusclinical phenotypeepileptic encephalopathiesepileptiformexcitatory neuronexperimental studyglobal healthinduced pluripotent stem cellinhibitory neuronlissencephalymosaicnervous system disordernetwork dysfunctionneuralneural circuitneural networkneuropathologyneuropsychiatric disorderneuroregulationnovel therapeuticspathogenpreservationprotein functionsensorstemstem cell modeltherapeutic developmenttool
项目摘要
PROJECT SUMMARY
Neurodevelopmental and neuropsychiatric disorders are a global health problem; yet remarkably little is known
about their neurological basis in humans. Consequently, treatment options remain limited. The advent of
methods to direct the formation of neurons from human embryonic and induced pluripotent stem cells
(collectively hPSCs) provides unprecedented opportunities to both investigate how the function of human
neural circuits is subverted by neurological disease and screen for new therapies. A major step towards these
goals has been realized by the development of organoid culture techniques through which hPSC can be
directed to form spatially organized, brain-like structures. Thus far, brain organoids have been successfully
employed to model the impact of genetic mutations and environmental pathogens that result in overt defects in
brain growth. However, overall brain structure is preserved in most neurological disorders, and defects are
primarily defined by alterations in neural activities. Major challenges thus remain in developing means for
defining the organization and function of neural networks within organoids and using this approach to explore
underlying disease mechanisms and therapeutic opportunities. In our recent work, we discovered that
remarkably complex neural network activities can emerge through the creation of cortex-ganglionic eminence
fusion organoids, which permits the intermixing and functional coupling of excitatory and inhibitory neurons.
Using a combination of calcium sensor imaging and electrophysiological approaches, we identified that fusion
organoids exhibit sustained multifrequency neural oscillations reminiscent of higher network functions seen in
intact brain samples and slice cultures. We further developed a fusion organoid model for the
neurodevelopmental disorder Rett syndrome and found that organoids harboring mutations in the MECP2
gene exhibit markedly abnormal neural network activities including episodes of hypersynchronous bursting,
loss of low-to-mid frequency oscillatory rhythms, and abnormal appearance of epileptiform high frequency
oscillations. Together, these studies illustrate the extraordinary potential for the fusion organoid platform to
report both normal and dysfunctional neural network functions and recapitulate salient pathological features
seen in Rett patients such as seizures. Here, we seek to address three central questions for elucidating the
mechanisms underlying neural network dysfunction associated with Rett syndrome and other
neurodevelopmental disorders. First, does neural network dysfunction seen in Rett syndrome organoids
generated from patients harboring different mutations correlate with the nature of the mutation? Second, what
is the impact of cellular mosaicism in MECP2 function on neural network activities? Third, do organoid models
for different neurological diseases with a seizure component exhibit shared or distinct network dysfunction
profiles? Through our studies, we will explore how brain organoids can be best utilized to determine the root
causes of a range of human neuropathologies and work towards the goal of discovering new treatments.
项目概要
神经发育和神经精神疾病是一个全球性的健康问题;然而我们却知之甚少
关于它们在人类中的神经学基础。因此,治疗选择仍然有限。的出现
指导人类胚胎干细胞和诱导多能干细胞形成神经元的方法
(统称 hPSC)为研究人类功能如何发挥作用提供了前所未有的机会
神经回路被神经系统疾病破坏并寻找新疗法。朝着这些目标迈出的重要一步
类器官培养技术的发展已经实现了目标,通过该技术可以将 hPSC
旨在形成空间组织的、类似大脑的结构。目前,脑类器官已成功
用于模拟基因突变和环境病原体的影响,这些影响会导致明显的缺陷
大脑生长。然而,在大多数神经系统疾病中,大脑的整体结构得到了保留,并且缺陷
主要由神经活动的改变来定义。因此,主要挑战仍然是开发手段
定义类器官内神经网络的组织和功能,并使用这种方法来探索
潜在的疾病机制和治疗机会。在我们最近的工作中,我们发现
通过皮层神经节隆起的创建可以出现非常复杂的神经网络活动
融合类器官,允许兴奋性和抑制性神经元的混合和功能耦合。
通过结合钙传感器成像和电生理学方法,我们确定了融合
类器官表现出持续的多频率神经振荡,让人想起在
完整的大脑样本和切片培养物。我们进一步开发了融合类器官模型
神经发育障碍 Rett 综合征,并发现含有 MECP2 突变的类器官
基因表现出明显异常的神经网络活动,包括超同步爆发的发作,
中低频率振荡节律丧失,以及癫痫样高频异常出现
振荡。这些研究共同证明了融合类器官平台的巨大潜力
报告正常和功能失调的神经网络功能并概括显着的病理特征
见于 Rett 患者,如癫痫发作。在这里,我们试图解决三个核心问题,以阐明
与 Rett 综合征和其他疾病相关的神经网络功能障碍的机制
神经发育障碍。首先,雷特综合征类器官中是否存在神经网络功能障碍?
由携带不同突变的患者产生的结果与突变的性质相关吗?二、什么
MECP2 功能中的细胞嵌合对神经网络活动有影响吗?三、做类器官模型
对于具有癫痫发作成分的不同神经系统疾病,表现出共同或不同的网络功能障碍
个人资料?通过我们的研究,我们将探索如何最好地利用大脑类器官来确定根源
一系列人类神经病理学的原因,并致力于发现新疗法的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BENNETT G NOVITCH其他文献
BENNETT G NOVITCH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BENNETT G NOVITCH', 18)}}的其他基金
Elucidating the molecular mechanisms behind human neurodevelopmental disorders using brain organoids
利用脑类器官阐明人类神经发育障碍背后的分子机制
- 批准号:
10467918 - 财政年份:2022
- 资助金额:
$ 71.92万 - 项目类别:
Mechanisms underlying non-REM sleep and neural oscillation abnormalities in Dup15q and Rett Syndrome: Effects on Intellectual Disability
Dup15q 和 Rett 综合征中非快速眼动睡眠和神经振荡异常的机制:对智力障碍的影响
- 批准号:
10085982 - 财政年份:2020
- 资助金额:
$ 71.92万 - 项目类别:
Mechanisms underlying non-REM sleep and neural oscillation abnormalities in Dup15q and Rett Syndrome: Effects on Intellectual Disability
Dup15q 和 Rett 综合征中非快速眼动睡眠和神经振荡异常的机制:对智力障碍的影响
- 批准号:
10224910 - 财政年份:2020
- 资助金额:
$ 71.92万 - 项目类别:
Mechanisms underlying non-REM sleep and neural oscillation abnormalities in Dup15q and Rett Syndrome: Effects on Intellectual Disability
Dup15q 和 Rett 综合征中非快速眼动睡眠和神经振荡异常的机制:对智力障碍的影响
- 批准号:
10686876 - 财政年份:2020
- 资助金额:
$ 71.92万 - 项目类别:
Notch-mediated modulation of Sonic hedgehog signaling in neural fate specification and differentiation
神经命运规范和分化中Notch介导的Sonic hedgehog信号传导调节
- 批准号:
10223452 - 财政年份:2020
- 资助金额:
$ 71.92万 - 项目类别:
Mechanisms underlying non-REM sleep and neural oscillation abnormalities in Dup15q and Rett Syndrome: Effects on Intellectual Disability
Dup15q 和 Rett 综合征中非快速眼动睡眠和神经振荡异常的机制:对智力障碍的影响
- 批准号:
10426152 - 财政年份:2020
- 资助金额:
$ 71.92万 - 项目类别:
Molecular Pathways Controlling Respiratory Motor Neuron Formation and Function
控制呼吸运动神经元形成和功能的分子途径
- 批准号:
8965412 - 财政年份:2015
- 资助金额:
$ 71.92万 - 项目类别:
Regulation of neural progenitor functions underlying cortical growth & complexity
皮质生长背后的神经祖细胞功能的调节
- 批准号:
9281074 - 财政年份:2015
- 资助金额:
$ 71.92万 - 项目类别:
Transcriptional regulation of neuronal differentiation
神经元分化的转录调控
- 批准号:
8322159 - 财政年份:2010
- 资助金额:
$ 71.92万 - 项目类别:
Transcriptional regulation of neuronal differentiation
神经元分化的转录调控
- 批准号:
8022250 - 财政年份:2010
- 资助金额:
$ 71.92万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanism and Therapeutic Potential of CBD to Repair Blood-Brain Barrier Dysfunction in Epilepsy
CBD修复癫痫血脑屏障功能障碍的机制和治疗潜力
- 批准号:
10644405 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Multiscale Dynamics of the Frontotemporal Connectome in Refractory Epilepsy
难治性癫痫额颞叶连接组的多尺度动力学
- 批准号:
10510593 - 财政年份:2022
- 资助金额:
$ 71.92万 - 项目类别:
Focused ultrasound-mediated disruption of blood plasma protein binding with pharmacological molecules
聚焦超声介导破坏血浆蛋白与药理学分子的结合
- 批准号:
10046533 - 财政年份:2020
- 资助金额:
$ 71.92万 - 项目类别:
Optogenetic and chemogenetic manipulations of striatal output pathways for seizure control
用于控制癫痫发作的纹状体输出通路的光遗传学和化学遗传学操作
- 批准号:
10463644 - 财政年份:2019
- 资助金额:
$ 71.92万 - 项目类别:
Optogenetic and chemogenetic manipulations of striatal output pathways for seizure control
用于控制癫痫发作的纹状体输出通路的光遗传学和化学遗传学操作
- 批准号:
10004524 - 财政年份:2019
- 资助金额:
$ 71.92万 - 项目类别: