Early-Stage Clinical Trial of AI-Driven CBCT-Guided Adaptive Radiotherapy for Lung Cancer
AI驱动的CBCT引导的肺癌适应性放疗的早期临床试验
基本信息
- 批准号:10575081
- 负责人:
- 金额:$ 19.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AirAnatomyBronchial TreeCancer PatientChestClinicClinicalDataDatabasesDimensionsDoseDose LimitingEarly treatmentEquipmentGenerationsGoalsHeartImageImmobilizationLearningLinear Accelerator Radiotherapy SystemsLinkLungMalignant neoplasm of lungMethodologyMethodsModernizationModificationMotionNetwork-basedNon-Small-Cell Lung CarcinomaOrganOutcomePatient CarePatientsPatternPhase I Clinical TrialsPhysiciansPositioning AttributePrimary NeoplasmProcessRadiationRadiation OncologyRadiation therapyRelative RisksResearchResearch PersonnelResourcesRiskRoleScanningSecondary toSupervisionSystemTestingTimeTissuesToxic effectUncertaintyValidationVertebral columnX-Ray Computed Tomographyartificial intelligence methodautomated segmentationclinical riskcone-beam computed tomographyconvolutional neural networkcostdeep learningearly phase clinical trialeffective therapyfeasibility trialimaging Segmentationimprovedinterestlearning strategyloss of functionnovelparticipant enrollmentprimary endpointprospectivequantitative imagingsecondary outcomesimulationstandard of caresuccesstreatment durationtreatment planningtumor
项目摘要
PROJECT SUMMARY
Stereotactic body radiation therapy (SBRT) is a highly effective treatment for early-stage non-small cell lung
cancer, but its accuracy can be compromised by multiple factors. There is an interval between simulation and
the first day of treatment, the size and position of targets and organs at risk can shift over a course of
treatment, and the thorax is in constant multidimensional motion. Adaptive radiation can improve the accuracy
of SBRT, but implementing it within the workflow of a busy radiation oncology clinic currently requires re-
simulation and re-planning, costing valuable departmental time and resources. Cone beam computed
tomography (CBCT) scans are obtained daily prior to the delivery of each fraction, but their utility for adaptive
radiation therapy has been limited by their image quality. Processing time also remains a significant barrier for
real-time deep learning-based methodologies. The objective of our proposed research is therefore to develop,
validate, and test in an early clinical trial the feasibility of using our two-part cone-beam computed tomography-
based deep learning method for dose verification based on rapid and accurate generation of high quality
synthetic CTs and multi-organ segmentation. In this project, we will pursue two Specific Aims: 1) to develop
and refine CBCT-based synthetic CTs for CBCT quality improvement, and 2) to evaluate the clinical feasibility
of our synthetic CT-based dose verification. The early clinical trial will prospectively enroll patients with early-
stage non-small cell lung cancer receiving definitive SBRT. Validation of the feasibility of this method is a
necessary intermediate step towards our longer-term goal of the implementation of real-time lung cancer
adaptive radiation, which will allow for increased accuracy of higher dose to target volumes and lower doses to
organs at risk, thereby improving local control and decreasing radiation-related risks and toxicities for patients
with non-small cell lung cancer.
项目概要
立体定向放射治疗(SBRT)是治疗早期非小细胞肺的高效方法
癌症,但其准确性可能会受到多种因素的影响。仿真与仿真之间有一个间隔
在治疗的第一天,有风险的目标和器官的大小和位置可能会在一个疗程中发生变化
治疗时,胸部处于持续的多维运动中。自适应辐射可以提高精度
SBRT,但在繁忙的放射肿瘤诊所的工作流程中实施它目前需要重新
模拟和重新规划,花费了宝贵的部门时间和资源。锥束计算
每天在交付每个部分之前进行断层扫描 (CBCT) 扫描,但它们对于适应性的实用性
放射治疗因其图像质量而受到限制。处理时间仍然是一个重大障碍
基于实时深度学习的方法。因此,我们提出的研究的目标是开发,
在早期临床试验中验证和测试使用我们的两部分锥形束计算机断层扫描的可行性-
基于深度学习方法的剂量验证基于快速准确生成高质量
合成 CT 和多器官分割。在这个项目中,我们将追求两个具体目标:1)开发
并完善基于 CBCT 的合成 CT 以提高 CBCT 质量,2) 评估临床可行性
我们基于合成 CT 的剂量验证。早期临床试验将前瞻性地招募早期患有以下疾病的患者:
接受确定性 SBRT 的非小细胞肺癌分期。验证该方法的可行性
实现实时肺癌的长期目标的必要中间步骤
自适应辐射,这将提高对目标体积的较高剂量和对目标体积的较低剂量的准确性
处于危险中的器官,从而改善局部控制并降低患者与辐射相关的风险和毒性
患有非小细胞肺癌。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aparna Kesarwala其他文献
Aparna Kesarwala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aparna Kesarwala', 18)}}的其他基金
Monitoring the interactions between cancer cell metabolism and radiation response
监测癌细胞代谢与放射反应之间的相互作用
- 批准号:
10001058 - 财政年份:2018
- 资助金额:
$ 19.56万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
- 批准号:
10637462 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Investigating Radiation-Induced Injury to Airways and Pulmonary Vasculature in Lung SABR
研究 Lung SABR 中辐射引起的气道和肺血管损伤
- 批准号:
9106613 - 财政年份:2016
- 资助金额:
$ 19.56万 - 项目类别:
Investigating Radiation-Induced Injury to Airways and Pulmonary Vasculature in Lung SABR
研究 Lung SABR 中辐射引起的气道和肺血管损伤
- 批准号:
9335323 - 财政年份:2016
- 资助金额:
$ 19.56万 - 项目类别:
Identifying imaging-based biomarkers of COPD development through virtual inhalation experiments
通过虚拟吸入实验识别 COPD 发展的基于成像的生物标志物
- 批准号:
9144831 - 财政年份:2015
- 资助金额:
$ 19.56万 - 项目类别:
Project 4 - Dosimetry Modeling and Interspecies Extrapolation
项目 4 - 剂量测定建模和种间外推
- 批准号:
7466358 - 财政年份:
- 资助金额:
$ 19.56万 - 项目类别: