Feasibility of transcranial histotripsy for pediatric neuro-oncology applications using a hemispherical transducer
使用半球形换能器进行经颅组织解剖用于儿科神经肿瘤学应用的可行性
基本信息
- 批准号:10570948
- 负责人:
- 金额:$ 19.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAccelerationAcousticsAdoptionAmplifiersAnimalsBenignBrainBrain NeoplasmsCancer EtiologyCellsCephalicChildChildhoodChildhood Brain NeoplasmChildhood Malignant Brain TumorClinicalClinical ResearchDevelopmentDiagnosisEmerging TechnologiesExperimental DesignsFDA approvedFamily suidaeFocused UltrasoundGasesGoalsGrantHeatingHumanLate EffectsLesionLiteratureMechanicsMediatingMethodsModalityModelingMorbidity - disease rateNational Institute of Biomedical Imaging and BioengineeringNeurologicOperative Surgical ProceduresOutcomePhysiologic pulsePlayPopulationProcessQuality of lifeRadiation exposureRadiation therapyResearchResearch PersonnelRiskSafetyScalp structureSecond Primary CancersSeriesShapesShockStressSystemTadpolesTestingTherapeuticThermal Ablation TherapyTissue TherapyTissuesTransducersTremorUltrasonic TransducerUltrasonicsattenuationchemotherapyclinical translationcostcraniumdesignexperimental studyheart damagehigh riskin vivoinnovationlung injurymillisecondmortalitynervous system disorderneuro-oncologynovelpediatric patientspressureresponsesimulationtransmission process
项目摘要
Pediatric patients have a real and urgent unmet need for less invasive treatments which can efficiently and
safely treat brain tumors without incurring significant late effects. The long-term goal of this proposal is to
develop an efficient non-invasive treatment modality without any late effects for safe treatment of both benign
and malignant pediatric brain tumors. This will be done utilizing tissue-liquification by focused ultrasound
(FUS)-induced histotripsy. The overall objectives in this application are to (i) elucidate the degree to which high
acoustic pressures and non-linear shocking mediate the tissue liquification process and what contribution each
of three possible histotripsy mechanism may play when using a hemispherical FUS transducer; and (ii)
systematically investigate the parameter space that supports mechanical liquification by hemispherical
transducers both ex vivo and in vivo with pediatric skulls in the FUS beam path. The central hypothesis is that
carefully designed experiments can be performed to understand the mechanism of action behind tissue
liquification using low f-number (e.g., hemispherical) transducers, and that histotripsy can be feasibly
accomplished within at least a subset of the pediatric population. The rationale for this project is that
understanding the mechanism responsible for tissue liquification using existing and regulatory approved
hemispherical transcranial FUS transducers, together with in vivo parameter optimization, is likely to offer
strong scientific support for the feasibility of pediatric brain tumor histotripsy treatments. The central hypothesis
will be tested by pursuing two specific aims: 1) conduct carefully designed computational, benchtop, and ex
vivo experiments to determine the contribution each of three possible histotripsy mechanism have on the tissue
liquification process; and 2) investigate the parameter space that supports mechanical liquification by
hemispherical transducers through pediatric skulls. The research proposed in this application is innovative, in
the applicant’s opinion, because it proposes to determine the mechanism of action behind histotripsy tissue
liquification using low f-number FUS transducers, as well as optimize the FUS pulsing parameters. The
proposed research is significant because it is expected to provide a strong scientific justification for further
studies of transcranial histotripsy for the pediatric population. Ultimately, this novel non-invasive treatment
modality has the potential to help the approximately 4,300 children who are diagnosed with brain tumors in the
US every year, 30% of whom do not survive past five years after diagnosis, with a safe an efficient treatment
option.
儿科患者对于微创治疗有着真实而紧迫的未满足需求,这种治疗可以有效且有效地进行。
安全地治疗脑肿瘤而不产生明显的后期影响 该提案的长期目标是
开发一种有效的非侵入性治疗方式,无任何后期影响,安全治疗良性和
这将通过聚焦超声进行组织液化来完成。
(FUS) 诱导的组织解剖学本申请的总体目标是 (i) 阐明高程度。
声压和非线性冲击介导组织液化过程以及各自的贡献
使用半球形 FUS 换能器时可能会发挥三种可能的组织解剖机制;以及 (ii)
显然研究了半球支持机械液化的参数空间
FUS 光束路径中的体外和体内儿童头骨传感器。
可以进行精心设计的实验来了解组织背后的作用机制
使用低 f 数(例如半球形)换能器进行液化,并且可以可行地进行组织解剖
至少在一部分儿科人群中完成了该项目的基本原理是:
使用现有的和监管批准的方法了解负责组织液化的机制
半球形经颅 FUS 传感器与体内参数优化一起,可能会提供
为小儿脑肿瘤组织解剖治疗的可行性提供了强有力的科学支持。
将通过追求两个具体目标进行测试:1)进行精心设计的计算、台式和扩展
体内实验以确定三种可能的组织解剖机制对组织的贡献
液化过程;2) 研究支持机械液化的参数空间
通过儿科头骨的半球形传感器 本申请中提出的研究具有创新性。
申请人的意见,因为它建议确定组织解剖组织背后的作用机制
使用低 f 数 FUS 传感器进行液化,并优化 FUS 脉冲参数。
拟议的研究意义重大,因为预计它将为进一步的研究提供强有力的科学依据
对儿科人群进行经颅组织解剖学的研究最终是这种新颖的非侵入性治疗。
该疗法有可能帮助该地区约 4,300 名被诊断患有脑肿瘤的儿童
美国每年有 30% 的患者在诊断后无法存活超过五年,但接受安全有效的治疗
选项。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Henrik Carl Axel Odeen其他文献
Henrik Carl Axel Odeen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Henrik Carl Axel Odeen', 18)}}的其他基金
Real-time monitoring and treatment evaluation of MR guided focal ultrasound-mediated non-thermal ablation of brain tumors
磁共振引导聚焦超声介导脑肿瘤非热消融的实时监测和治疗评估
- 批准号:
10659248 - 财政年份:2022
- 资助金额:
$ 19.6万 - 项目类别:
Real-time monitoring and treatment evaluation of MR guided focal ultrasound-mediated non-thermal ablation of brain tumors
磁共振引导聚焦超声介导脑肿瘤非热消融的实时监测和治疗评估
- 批准号:
10511064 - 财政年份:2022
- 资助金额:
$ 19.6万 - 项目类别:
Feasibility of transcranial histotripsy for pediatric neuro-oncology applications using a hemispherical transducer
使用半球形换能器进行经颅组织解剖用于儿科神经肿瘤学应用的可行性
- 批准号:
10433621 - 财政年份:2022
- 资助金额:
$ 19.6万 - 项目类别:
Advanced Treatment Endpoint Assessment in MR-guided Focused Ultrasound
MR 引导聚焦超声的高级治疗终点评估
- 批准号:
10115726 - 财政年份:2020
- 资助金额:
$ 19.6万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 19.6万 - 项目类别:
Minimally Invasive High Intensity Therapeutic Ultrasound for the Treatment of Obstructive Hypertrophic Cardiomyopathy
微创高强度超声治疗梗阻性肥厚型心肌病
- 批准号:
10603460 - 财政年份:2023
- 资助金额:
$ 19.6万 - 项目类别:
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10584507 - 财政年份:2022
- 资助金额:
$ 19.6万 - 项目类别:
Real-time monitoring and treatment evaluation of MR guided focal ultrasound-mediated non-thermal ablation of brain tumors
磁共振引导聚焦超声介导脑肿瘤非热消融的实时监测和治疗评估
- 批准号:
10659248 - 财政年份:2022
- 资助金额:
$ 19.6万 - 项目类别:
Comprehensive MRI Guidance of Focused Ultrasound Neurosurgery
聚焦超声神经外科综合MRI指导
- 批准号:
10636961 - 财政年份:2020
- 资助金额:
$ 19.6万 - 项目类别: