5/5 CAPER: Computerized Assessment of Psychosis Risk
5/5 CAPER:精神病风险的计算机化评估
基本信息
- 批准号:10574998
- 负责人:
- 金额:$ 5.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAmericanAttenuatedAutomobile DrivingBehavioralBiological MarkersCharacteristicsClinicalCollaborationsComputing MethodologiesDetectionDiagnosisDimensionsEarly DiagnosisEarly InterventionEtiologyFoundationsFrequenciesFunctional disorderGenerationsGoalsGoldHuman ResourcesIndividualInternetIntervention TrialInterviewJointsLinkLongitudinal StudiesMachine LearningMeasuresMethodsModelingNeurobiologyOnset of illnessOutcomeParticipantPatient Self-ReportPerformancePersonsPopulationPredictive ValuePrimary PreventionProcessPsychopathologyPsychosesPsychotic DisordersPublic HealthRecording of previous eventsResearchResearch PersonnelRiskRisk AssessmentRoleSample SizeSecondary PreventionSensitivity and SpecificitySeveritiesSiteSpecificitySymptomsSystemTechniquesTest ResultTestingTrainingTranslatingUnited StatesWorkYouthbaseclinical high risk for psychosisclinical practicecognitive testingcomparison groupcomputerizeddesigndisabilitydisorder riskfollow-upfunctional declinefunctional outcomeshelp-seeking behaviorhigh riskhigh risk populationimprovedmachine learning classificationmachine learning methodmetropolitannew therapeutic targetnext generationnovel strategiesonline deliverypreventpreventive interventionpsychosis riskpsychotic symptomsrecruitrelating to nervous systemscreeningsocialtooltrait
项目摘要
Summary
Research suggests that if we can identify individuals at-risk for these disorders early, we may be able to
improve the course of illness and hopefully prevent illness onset all together. A first generation of studies
suggest that the approach of identifying those at clinical high-risk (CHR), through the use of specialized
interviews with help-seeking individuals (with attenuated psychosis symptoms) is a promising strategy for
exploring mechanisms associated with illness progression, understanding etiology, and identifying new
treatment targets. This work has two major limitations: 1) interview methods have limited specificity as only
15-20% of CHR individuals convert to psychosis, and 2) the expertise needed to make CHR diagnosis is
only accessible in a handful of metropolitan centers, and requires extensively trained staff. Here, we aim to
lay the foundation for a new approach to CHR assessment that will increase accessibility, and positive
predictive value. We propose to develop a new psychosis symptom domain sensitive (PSDS) battery,
prioritizing tasks that show correlations with the symptoms that define psychosis (actively tapping into
psychotic disorder-specific processes, rather than to trait vulnerability signs) and relatedly, that are tied to
the neurobiological systems and computational mechanisms implicated in these symptoms. To promote
accessibility, we utilize inexpensive behavioral tasks that could be administered over the internet; this will set
the stage for later research testing widespread screening in help-seeking as well as non-help seeking
populations, that would identify those most in need of in-depth assessment. Before this can be
accomplished however, it is necessary to determine which tasks are effective for predicting illness course
and how this strategy compares to the first-generation prediction methods. We propose to recruit 500 CHR
participants, 500 help-seeking individuals, and 500 healthy controls across 5 sites and in Aim 1, develop a
PSDS battery risk calculator based on measures that prove to be most sensitive to imminent conversion.
Further, the inclusion of a help-seeking comparison group is critical for translating the PSDS calculator into
clinical practice, where the goal is to differentiate those at greatest risk for developing a psychotic disorder
from others forms of psychopathology. In Aim 2, we will compare the sensitivity and specificity of the PSDS
risk-calculator to the North American Prodromal Study
(NAPLS) risk-calculator (a gold-standard first-generation tool) in the prediction of psychosis conversion over
a 2 year- period. Last, in Aim 3, the study will determine if the PSDS predicts functional outcomes over the
course of 2 years. Predicting diagnosis is important but being able to provide early intervention to limit the
disability characteristic of psychosis is a priority. This project will answer the preliminary questions
necessary for a next-generation CHR battery, tied to illness mechanisms and powered by cutting-edge
computational methods, that can be used to facilitate the earliest possible detection of psychosis risk.
概括
研究表明,如果我们能尽早确定这些疾病的人,我们也许可以
改善疾病的进程,并希望可以一起疾病开始。第一代研究
建议通过使用专业人士来识别临床高风险(CHR)的方法
与寻求帮助的人(患有减弱精神病症状)的访谈是一种有前途的策略
探索与疾病进展,理解病因和识别新的机制
治疗目标。这项工作有两个主要局限性:1)访谈方法的特异性有限
15-20%的CHR个人转化为精神病,2)进行CHR诊断所需的专业知识是
只能在少数大都会中心访问,并且需要经过广泛培训的员工。在这里,我们的目标是
为一种新的CHR评估方法奠定了基础,以提高可访问性,并积极
预测价值。我们建议开发一种新的精神病症状域敏感(PSD)电池,
优先考虑与定义精神病的症状相关的任务(主动利用
精神病特定的过程,而不是特质脆弱性迹象),而与之相关的是
神经生物学系统和计算机制与这些症状有关。促进
可访问性,我们利用可以通过Internet管理的廉价行为任务;这将设置
以后研究测试在寻求帮助以及非求助的阶段
人群,这将确定最需要深入评估的人。在此之前可以
但是,完成的是,有必要确定哪些任务有效地预测疾病课程
以及该策略与第一代预测方法的比较。我们建议招募500 chr
参与者,500名寻求帮助的人,以及500个网站上的500个健康对照,在AIM 1中,开发了一个
PSD电池风险计算器基于对即将转换最敏感的措施。
此外,包含寻求帮助比较组对于将PSD计算器转换为
临床实践,目标是区分患有精神病的风险最大的人
来自其他形式的心理病理学。在AIM 2中,我们将比较PSD的灵敏度和特异性
北美前驱研究的风险计算机
(NAPL)在预测精神病转化的风险计算器(金标准的第一代工具)
2年。最后,在AIM 3中,研究将确定PSD是否预测
课程2年。预测诊断很重要,但能够提供早期干预以限制
精神病的残疾特征是当务之急。该项目将回答初步问题
下一代CHR电池所需的必要
计算方法,可用于促进最早可能检测精神病风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PHILIP CORLETT其他文献
PHILIP CORLETT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PHILIP CORLETT', 18)}}的其他基金
5/5 CAPER: Computerized Assessment of Psychosis Risk
5/5 CAPER:精神病风险的计算机化评估
- 批准号:
10488386 - 财政年份:2022
- 资助金额:
$ 5.99万 - 项目类别:
5/5 CAPER: Computerized Assessment of Psychosis Risk
5/5 CAPER:精神病风险的计算机化评估
- 批准号:
10786777 - 财政年份:2020
- 资助金额:
$ 5.99万 - 项目类别:
5/5 CAPER: Computerized Assessment of Psychosis Risk
5/5 CAPER:精神病风险的计算机化评估
- 批准号:
10360479 - 财政年份:2020
- 资助金额:
$ 5.99万 - 项目类别:
5/5 CAPER: Computerized Assessment of Psychosis Risk
5/5 CAPER:精神病风险的计算机化评估
- 批准号:
10576406 - 财政年份:2020
- 资助金额:
$ 5.99万 - 项目类别:
Songmaking in a Group (SING): Music, Hallucinations & Predictive Coding
团体歌曲制作(SING):音乐、幻觉
- 批准号:
10704492 - 财政年份:2019
- 资助金额:
$ 5.99万 - 项目类别:
Songmaking in a Group (SING): Music, Hallucinations & Predictive Coding
团体歌曲制作(SING):音乐、幻觉
- 批准号:
10263460 - 财政年份:2019
- 资助金额:
$ 5.99万 - 项目类别:
Songmaking in a Group (SING): Music, Hallucinations & Predictive Coding
团体歌曲制作(SING):音乐、幻觉
- 批准号:
10015353 - 财政年份:2019
- 资助金额:
$ 5.99万 - 项目类别:
Predictive Coding as a Framework for Understanding Psychosis
预测编码作为理解精神病的框架
- 批准号:
10292448 - 财政年份:2017
- 资助金额:
$ 5.99万 - 项目类别:
Predictive Coding as a Framework for Understanding Psychosis
预测编码作为理解精神病的框架
- 批准号:
10064647 - 财政年份:2017
- 资助金额:
$ 5.99万 - 项目类别:
相似海外基金
Development of a digital therapeutic targeting anxiety sensitivity to reduce PTSD-SUD in women presenting for emergency care after sexual assault.
开发一种针对焦虑敏感性的数字疗法,以减少性侵犯后寻求紧急护理的女性的 PTSD-SUD。
- 批准号:
10449766 - 财政年份:2023
- 资助金额:
$ 5.99万 - 项目类别:
Milk fat globule-EGF factor 8 and hepatocyte apoptosis-induced liver wound healing response
乳脂肪球-EGF因子8与肝细胞凋亡诱导的肝脏创面愈合反应
- 批准号:
10585802 - 财政年份:2023
- 资助金额:
$ 5.99万 - 项目类别:
The lipid hydrolase NAAA as a target for non-addictive analgesic medications
脂质水解酶 NAAA 作为非成瘾性镇痛药物的靶标
- 批准号:
10584428 - 财政年份:2023
- 资助金额:
$ 5.99万 - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10573109 - 财政年份:2023
- 资助金额:
$ 5.99万 - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10818835 - 财政年份:2023
- 资助金额:
$ 5.99万 - 项目类别: