Mechanisms of Active Sensing in Drosophila
果蝇主动感知机制
基本信息
- 批准号:10577439
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:Afferent NeuronsAnimal ModelAnimalsBRAIN initiativeBehaviorBehavioralBiological ModelsBrainCell modelCellsCharacteristicsDataDiseaseDrosophila genusDrosophila melanogasterElectrophysiology (science)Environmental WindEsthesiaFailureFingersFlying body movementGeneticGenetic ModelsGoalsGrantHandHumanImmunohistochemistryInsectaLabelLearningLocationMachine LearningMeasuresMediatingMentorsMissionModelingMolecularMotorMotor NeuronsMovementMuscleNervous System PhysiologyNervous system structureNeuronsNeurotransmittersOdorsPhasePopulationProcessRegulationResearchResolutionRoleSchizophreniaSensoryShapesSignal TransductionSpeedStainsStimulusStudy modelsSystemTestingTouch sensationTranslatingWalkingWorkautism spectrum disorderexpectationexperimental studyflygoal oriented behaviorinsightmachine learning algorithmneural circuitnoveloptogeneticspatch clampresponsesensorsensory stimulustool
项目摘要
The goal of this project is to study the cellular basis of active sensation. A crucial function of all nervous systems is to distinguish between sensory stimuli originating from the external world and that generated by our own movements. This task relies on brain circuits that integrate sensory information with an internal model, or expectation, of self-generated movements. The complexity and intractability of many models used to study active sensing means that translating insights from these studies to failures of normal nervous system function remains challenging. Fruit flies (Drosophila melanogaster) actively move their antennae, and my recent work has elucidated a neural circuit that processes mechanosensory information from the antenna. Given the power of Drosophila as a genetic model organism, this project aims to develop the neural circuits controlling and sensing antennal movement as a cellular model for studying principles of active sensing. In the K99 (mentored) portion of this grant, I will identify the cellular location at which self- versus externally-generated mechanosensory signals become differentially represented in the brain. I will make electrophysiological recordings of intracellular activity from 2nd and 3rd order mechanosensory neurons and compare how these two populations encode passive and active movements of the antennae. I will distinguish between these two types of movements using machine learning analysis of simultaneously recorded video data. For the R00 (independent) phase, I will use optogenetics and immunohistochemistry to identify motor neurons that control antennal movement. I will then ask where input from motor neurons impinge on the sensory circuit. Finally, I will test the role of active antennal movements in behavior. By perturbing active antennal movements in freely walking and flying flies, I will directly test how these movements enable different behavioral tasks such as wind orientation and obstacle avoidance. Together, these experiments will identify the cellular basis for active sensing in Drosophila, and their role in goal- oriented behaviors.
该项目的目标是研究主动感觉的细胞基础。所有神经系统的一个关键功能是区分来自外部世界的感觉刺激和由我们自己的运动产生的感觉刺激。这项任务依赖于将感觉信息与自我生成运动的内部模型或期望相结合的大脑回路。用于研究主动传感的许多模型的复杂性和棘手性意味着将这些研究的见解转化为正常神经系统功能的故障仍然具有挑战性。果蝇(果蝇)主动移动它们的触角,我最近的工作阐明了处理来自天线的机械感觉信息的神经回路。鉴于果蝇作为遗传模型生物的力量,该项目旨在开发控制和感知触角运动的神经回路,作为研究主动传感原理的细胞模型。在本次资助的 K99(指导)部分中,我将确定自我与外部生成的机械感觉信号在大脑中差异化表现的细胞位置。我将对二阶和三阶机械感觉神经元的细胞内活动进行电生理记录,并比较这两个群体如何编码触角的被动和主动运动。我将使用同时记录的视频数据的机器学习分析来区分这两种类型的运动。对于 R00(独立)阶段,我将使用光遗传学和免疫组织化学来识别控制触角运动的运动神经元。然后我会问运动神经元的输入在哪里影响感觉回路。最后,我将测试主动触角运动在行为中的作用。通过干扰自由行走和飞行的苍蝇的主动触角运动,我将直接测试这些运动如何实现不同的行为任务,例如风向和避障。这些实验将共同确定果蝇主动感知的细胞基础,及其在目标导向行为中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARIE SUVER其他文献
MARIE SUVER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARIE SUVER', 18)}}的其他基金
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Role of Astrocyte Elevated Gene-1 (AEG-1), A Novel Multifunctional Protein, In Chemotherapy-Induced Peripheral Neuropathy
星形胶质细胞升高基因 1 (AEG-1)(一种新型多功能蛋白)在化疗引起的周围神经病变中的作用
- 批准号:
10679708 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
The Injectrode- An injectable, easily removable electrode as a trial lead for baroreceptor activation therapy to treat hypertension and heart failure
Injectrode——一种可注射、易于拆卸的电极,作为压力感受器激活疗法的试验引线,以治疗高血压和心力衰竭
- 批准号:
10697600 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Neural Inflammation and Exercise Pressor Reflex in Heart Failure
心力衰竭中的神经炎症和运动升压反射
- 批准号:
10712202 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Cardiac Autonomic Activation In Atrial Fibrillation Triggers And Substrate
心房颤动的心脏自主激活触发因素和基质
- 批准号:
10636441 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: