Polymer-Lipid Particles investigated by Magnetic Resonance Spectroscopy
通过磁共振波谱研究聚合物脂质颗粒
基本信息
- 批准号:10579675
- 负责人:
- 金额:$ 42.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnisotropyAntiviral TherapyBinding ProteinsBiologicalBiophysicsCell physiologyCellsCharacteristicsChargeComplexDevelopmentDiseaseElectron Spin Resonance SpectroscopyEnvironmentEquilibriumGoalsHealthHeart DiseasesHydrophobicityInfectionKnowledgeLeadLengthLibrariesLipid BilayersLipidsMagnetic ResonanceMagnetic Resonance SpectroscopyMembraneMembrane LipidsMembrane ProteinsMentorsMethodsMicellesModernizationPolymer ChemistryPolymersProcessPropertyProteinsReportingResearchRotationScaffolding ProteinSignal TransductionSpin LabelsStructureStructure-Activity RelationshipStudentsSystemTechniquesTrainingVesicleViralVirus DiseasesWorkamphiphilicitycell growth regulationcostdesigngraduate studenthydrophilicityinsightlipid nanoparticlematerials sciencemembrane modelmimeticsnanodisknanometernanoscaleoral communicationparticlepathogenic virusprotein complexprotein structurerational designself assemblyskillsstructural biologytherapeutic developmenttherapeutic proteintoolundergraduate student
项目摘要
Project Summary/Abstract
Membrane proteins represent approximately 30% of all known proteins but only
approximately 1% of all solved protein structures. Despite recent advances in methods for
membrane protein structural biology, knowledge about this important class of proteins lags behind
their soluble counterparts. Membrane proteins are critical to numerous aspects of health, ranging
from regulation cellular function and transport into and out of the cell, through to viral infections
which use membrane proteins as part of the infection cycle. Understanding the structure of
membrane proteins can be critical to disrupting such viral infections, and can also lead to the
development of effective antiviral therapies. In almost 90% of newly developed and approved
therapeutics, protein structural information was used to guide the development of the therapeutic
molecules. Due to the limited and incomplete structural information on membrane bound proteins,
the development of therapeutics and treatments that target membrane bound proteins is limited.
A significant contribution to the challenges in elucidating membrane protein structures is the lack
of robust and appropriate lipid membrane mimetics. Existing membrane mimetics introduce
notable challenges that limit membrane protein structural determination. These challenges range
from highly curved micelles which may not represent the essentially flat lipid bilayer, lack of
compatibility with many lipids for bicelles, large sizes of vesicles which introduces anisotropy, cost
and potential background signal from membrane scaffold proteins, and lack of control over
polymer structure and the presence of aromatic groups on several existing nanodisc forming
polymers. This highlights an urgent need to develop lipid membrane mimetics which both provide
a good approximation to the native lipid bilayer in terms of both structure and curvature, while
also facilitating structural analysis of the membrane protein embedded in the mimetic. Yet polymer
structure-function relationships are not well established for polymers that interact with lipids and
membrane proteins.
This project will use modern controlled polymer chemistry tools, to create a new class of polymers
that will self-assemble with lipids. These self assembled polymer-lipid systems will form well
defined discs on the order of 10s of nanometers, giving lipid membrane mimetics suitable for the
analysis of many membrane proteins. The advanced polymer chemistry techniques will enable
fine tuning of polymer’s length, charges, and hydrophobicity. Polymers will also be modified with
spin-labels for electron paramagnetic resonance spectroscopy, a magnetic resonance method.
The magnetic resonance spectroscopic methods will be used on polymers, lipids and membrane
proteins modified with appropriate spin labels, providing insights into the local dynamics and
proximities of the self assembled polymer-lipid and polymer-lipid-membrane protein complexes.
The information regarding the structure and dynamics of the self-assembled complexes across
the diverse range of polymer functionality and structures used will give important insights into how
polymer structure impacts its interactions and assembly with biological molecules. These insights
can be used to guide the design of polymers for robust lipid membrane mimetics.
Training and mentoring of undergraduate students as well as a graduate assistant will be a core
feature of the proposed project. A diverse team of students will work on all aspects of the project,
gaining skills from the fundamental polymer chemistry, magnetic resonance spectroscopy to
membrane protein biophysics. Undergraduate students will be integrated fully into the projects,
along with the graduate student, gaining skills in this field at the interface of materials science and
biophysics. Beyond core scientific training, students will gain written and oral communication skills
disseminating the results of the research.
项目概要/摘要
膜蛋白约占所有已知蛋白质的 30%,但仅占
尽管最近在方法上取得了进展,但大约占所有已解决的蛋白质结构的 1%。
膜蛋白结构生物学,关于这一类重要蛋白质的知识滞后
它们的可溶性分子对健康的许多方面都至关重要。
从调节细胞功能和进出细胞的运输,到病毒感染
使用膜蛋白作为感染周期的一部分。
膜蛋白对于破坏此类病毒感染至关重要,并且还可能导致
近90%是新开发和批准的有效抗病毒疗法。
治疗学中,蛋白质结构信息被用来指导治疗药物的开发
由于膜结合蛋白的结构信息有限且不完整,
针对膜结合蛋白的疗法和疗法的开发是有限的。
对阐明膜蛋白结构的挑战的一个重大贡献是缺乏
介绍了现有的膜模拟物的稳健且合适的脂质膜模拟物。
限制膜蛋白结构测定的显着挑战。
来自高度弯曲的胶束,可能不代表平坦的脂质双层,本质上缺乏
与 bicelles 的许多脂质相容,大尺寸的囊泡会引入各向异性,成本
和来自膜支架蛋白的潜在背景信号,以及缺乏对
聚合物结构和芳香族基团在几种现有纳米盘成型中的存在
这凸显了开发两者都提供的脂质膜模拟物的迫切需要。
在结构和曲率方面都非常接近天然脂质双层,而
还有助于对嵌入模拟物聚合物中的膜蛋白进行结构分析。
对于与脂质相互作用的聚合物,结构-功能关系尚未建立良好
膜蛋白。
该项目将使用现代受控聚合物化学工具来创建新型聚合物
这些自组装的聚合物-脂质系统将与脂质自组装。
定义的圆盘数量级为 10 纳米,提供适合的脂质膜模拟物
先进的聚合物化学技术将使许多膜蛋白的分析成为可能。
聚合物的长度、电荷和疏水性也将进行微调。
用于电子顺磁共振波谱(一种磁共振方法)的自旋标记。
磁共振波谱方法将用于聚合物、脂质和膜
用适当的自旋标签修饰的蛋白质,提供对局部动态和
自组装聚合物-脂质和聚合物-脂质-膜蛋白复合物的邻近性。
有关自组装复合物的结构和动力学的信息
所使用的各种聚合物功能和结构将为我们提供重要的见解
聚合物结构影响其与生物分子的相互作用和组装。
可用于指导稳健的脂质膜模拟物的聚合物设计。
本科生和研究生助理的培训和指导将是核心
拟议项目的特点。多元化的学生团队将致力于该项目的各个方面,
获得基础高分子化学、磁共振波谱学的技能
膜蛋白生物物理学本科生将完全融入该项目,
与研究生一起,在材料科学和技术的交叉领域获得该领域的技能
除了核心科学培训之外,学生还将获得书面和口头沟通技巧。
传播研究结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dominik Konkolewicz其他文献
Dominik Konkolewicz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dominik Konkolewicz', 18)}}的其他基金
A supplement to: NIGMS 1R15GM144907-01A1 - Polymer-Lipid Particles investigated by Magnetic Resonance Spectroscopy
补充:NIGMS 1R15GM144907-01A1 - 通过磁共振波谱研究聚合物脂质颗粒
- 批准号:
10801755 - 财政年份:2022
- 资助金额:
$ 42.8万 - 项目类别:
相似国自然基金
各向异性介质中的超声兰姆导波波前调控及新原理集成化功能器件研究
- 批准号:12374438
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
各向异性柔性覆层湍流边界层直接数值模拟研究
- 批准号:12362022
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
带电流型畸变校正的大地电磁三维各向异性自适应反演研究
- 批准号:42304081
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
翁通爪哇洋底高原及其周边壳幔三维各向异性速度结构及构造意义
- 批准号:42376080
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
高各向异性FeCoNi/碳纳米管-石墨烯复合材料的多场耦合构筑及其低频超宽带吸波性能
- 批准号:52301239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Subunit Assembly and Substrate Interactions in HIV-1 RT
HIV-1 RT 中的亚基组装和底物相互作用
- 批准号:
7930208 - 财政年份:2009
- 资助金额:
$ 42.8万 - 项目类别:
Development of the Gag/Lysyl tRNA synthetase interaction as a target for anti-HIV
开发 Gag/赖氨酰 tRNA 合成酶相互作用作为抗 HIV 靶点
- 批准号:
7641008 - 财政年份:2008
- 资助金额:
$ 42.8万 - 项目类别:
Development of the Gag/Lysyl tRNA synthetase interaction as a target for anti-HIV
开发 Gag/赖氨酰 tRNA 合成酶相互作用作为抗 HIV 靶点
- 批准号:
8300739 - 财政年份:2008
- 资助金额:
$ 42.8万 - 项目类别:
Development of the Gag/Lysyl tRNA synthetase interaction as a target for anti-HIV
开发 Gag/赖氨酰 tRNA 合成酶相互作用作为抗 HIV 靶点
- 批准号:
8111659 - 财政年份:2008
- 资助金额:
$ 42.8万 - 项目类别:
Development of the Gag/Lysyl tRNA synthetase interaction as a target for anti-HIV
开发 Gag/赖氨酰 tRNA 合成酶相互作用作为抗 HIV 靶点
- 批准号:
7547575 - 财政年份:2008
- 资助金额:
$ 42.8万 - 项目类别: