Modularly built, complete, coordinate- and template-free brain atlases

模块化构建、完整、无坐标和模板的大脑图谱

基本信息

  • 批准号:
    10570256
  • 负责人:
  • 金额:
    $ 65.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-10 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

Project Summary Anatomical atlases are spatial reference maps of cells in tissues/organs/brains and provide structure information for a wide range of biological analyses. The anatomical atlas of C. elegans nervous system is the only atlas for the entire nervous system of an animal with a resolution of all neuronal classes. However, built on a limited dataset and manual annotations, the standard atlas is insufficient in capturing biological variabilities, inaccurate and difficult to use for cell identification routinely, and only applicable for wildtype adult. While several heroic efforts of generating and imaging marker strains to build atlases have much improved the atlases, there is still a need for a pipeline to build accurate genetic-background-specific (or experimental-condition-specific) atlases easily and cheaply; further, there is a need to build such atlases that can be used without specialized equipment and with as few genetic perturbations as possible. Recent development of machine learning techniques and molecular transgenic approaches enabling the systematic production of in vivo reporters and imaging methods capable of collecting and processing high-resolution datasets at a large scale. The goal of this application is to address the current bottleneck by establishing a combined experimental and computational pipeline for modularly built, complete, coordinate- and template-free brain atlases for democratized and flexible uses. By imaging in vivo markers in a large number of live animals, the project will generate complete anatomical atlases for the C. elegans nervous system that capture variability in the population, which will greatly enhance the accuracy of identity predictions when used on each animal. The project will generate a collection of transgenic animals expressing partly overlapping in vivo markers that cover all neurons and build a computational pipeline to assemble the atlases. Further, a few widely applicable developmental atlases as a direct output of the project will showcase the pipeline and the approach. Importantly, the atlases do not seek to provide a set of rigid coordinates for each neuron class, but instead, a set of constraints that can be used to provide best estimates of neuron identities for each new sample. This ensures accuracy and applicability of the atlases to specific use case. The building of whole-brain atlases is piece-wise from easily-obtained partial atlases, and can be crowd-sourced if desired. The use will be streamlined with image input and neuron-identity prediction output. The proposed project is innovative, because it will build the first complete anatomical atlases of a nervous system using large datasets collected from in vivo markers of many live animals; it uses relational information uniquely suited to provide more accurate assignments; it will capture variabilities among individual animals. The proposed the work is significant, because it will address the urgent and unmet need for accurate, easy-to-use and easily updatable atlases to curate the brain; further, it will develop and establish conceptual framework and techniques for similar efforts in more complex anatomical systems.
项目概要 解剖图谱是组织/器官/大脑中细胞的空间参考图,并提供结构 用于广泛的生物分析的信息。线虫神经系统的解剖图谱是 唯一的动物整个神经系统图谱,具有所有神经元类别的分辨率。然而,建立在 由于数据集和手动注释有限,标准图谱不足以捕捉生物变异性, 不准确且难以用于常规细胞鉴定,并且仅适用于野生型成体。虽然有几个 生成和成像标记菌株以构建图谱的英勇努力极大地改进了图谱, 仍然需要建立准确的遗传背景特定(或实验条件特定)的管道 轻松且便宜地制作地图集;此外,需要建立这样的地图集,无需专门的人员即可使用 设备和尽可能少的遗传扰动。机器学习的最新发展 技术和分子转基因方法能够系统地生产体内报告基因和 能够大规模收集和处理高分辨率数据集的成像方法。此举的目标 应用程序是通过建立一个组合的实验和计算来解决当前的瓶颈 用于模块化构建、完整、无坐标和模板的大脑图谱的管道,用于民主化和 灵活运用。通过对大量活体动物体内标记物进行成像,该项目将生成完整的 线虫神经系统的解剖图谱,捕捉种群的变异性,这将极大地 当用于每只动物时提高身份预测的准确性。该项目将生成一个集合 转基因动物表达部分重叠的体内标记,覆盖所有神经元并构建 组装地图集的计算管道。此外,一些广泛适用的发育图谱作为 该项目的直接输出将展示管道和方法。重要的是,这些地图集并不旨在 为每个神经元类提供一组刚性坐标,而是一组可用于 为每个新样本提供神经元身份的最佳估计。这确保了准确性和适用性 将地图集映射到特定用例。全脑图谱的构建是从容易获得的部分图谱中分段构建的 地图集,如果需要的话可以众包。通过图像输入和神经元身份将简化使用 预测输出。拟议的项目具有创新性,因为它将构建第一个完整的解剖图谱 使用从许多活体动物的体内标记收集的大型数据集来研究神经系统;它使用关系 特别适合提供更准确作业的信息;它将捕获个体之间的差异 动物。拟议的工作意义重大,因为它将解决对准确的、未满足的迫切需求。 易于使用且易于更新的地图集来管理大脑;此外,它将发展和建立概念 在更复杂的解剖系统中进行类似努力的框架和技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hang Lu其他文献

Hang Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hang Lu', 18)}}的其他基金

Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
  • 批准号:
    10467697
  • 财政年份:
    2022
  • 资助金额:
    $ 65.97万
  • 项目类别:
Functional analysis of whole-brain dynamics in learning
学习中全脑动态的功能分析
  • 批准号:
    9914432
  • 财政年份:
    2019
  • 资助金额:
    $ 65.97万
  • 项目类别:
Functional analysis of whole-brain dynamics in learning
学习中全脑动态的功能分析
  • 批准号:
    10063920
  • 财政年份:
    2019
  • 资助金额:
    $ 65.97万
  • 项目类别:
Functional analysis of whole-brain dynamics in learning
学习中全脑动态的功能分析
  • 批准号:
    10295765
  • 财政年份:
    2019
  • 资助金额:
    $ 65.97万
  • 项目类别:
Functional Analysis of Whole-Brain Dynamics in Learning
学习中全脑动态的功能分析
  • 批准号:
    10527358
  • 财政年份:
    2019
  • 资助金额:
    $ 65.97万
  • 项目类别:
Administrative Supplement: Systems variation underlying the genetics of aging
行政补充:衰老遗传学背后的系统变异
  • 批准号:
    9719249
  • 财政年份:
    2017
  • 资助金额:
    $ 65.97万
  • 项目类别:
Systems variation underlying the genetics of aging
衰老遗传学背后的系统变异
  • 批准号:
    9927549
  • 财政年份:
    2017
  • 资助金额:
    $ 65.97万
  • 项目类别:
Systems variation underlying the genetics of aging
衰老遗传学背后的系统变异
  • 批准号:
    9369804
  • 财政年份:
    2017
  • 资助金额:
    $ 65.97万
  • 项目类别:
Microfluidic assays for hyper-reactive platelets in diabetes
糖尿病高反应性血小板的微流控检测
  • 批准号:
    9199213
  • 财政年份:
    2016
  • 资助金额:
    $ 65.97万
  • 项目类别:
Evolving multigenic extensions to lifespan
进化多基因延长寿命
  • 批准号:
    8895557
  • 财政年份:
    2015
  • 资助金额:
    $ 65.97万
  • 项目类别:

相似国自然基金

单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
  • 批准号:
    82373465
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
  • 批准号:
    82303926
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
  • 批准号:
    82300208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
  • 批准号:
    82372499
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
  • 批准号:
    10827051
  • 财政年份:
    2024
  • 资助金额:
    $ 65.97万
  • 项目类别:
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
  • 批准号:
    10824044
  • 财政年份:
    2024
  • 资助金额:
    $ 65.97万
  • 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 65.97万
  • 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
  • 批准号:
    10748859
  • 财政年份:
    2024
  • 资助金额:
    $ 65.97万
  • 项目类别:
Core B: B-HEARD Core
核心 B:B-HEARD 核心
  • 批准号:
    10555691
  • 财政年份:
    2023
  • 资助金额:
    $ 65.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了