Selenoproteins in Arsenic-Induced Metabolic Dysfunction

砷引起的代谢功能障碍中的硒蛋白

基本信息

  • 批准号:
    10091436
  • 负责人:
  • 金额:
    $ 49.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-02-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Projected to afflict 642 million individuals globally by 2040, diabetes is a devastating metabolic disease that is increasingly tied to environmental toxicants. One such pollutant of immense public health significance is arsenic, which contaminates the drinking water for over 100 million individuals globally, including many living in the United States. Epidemiological evidence links arsenic exposure with diabetes; however, the mechanisms by which arsenic increases diabetes risk and the factors that modulate this risk remain incompletely known. Interestingly, arsenic and the essential element selenium have been known to have opposing biological functions for nearly 80 years. Selenium is incorporated into 25 unique proteins, selenoproteins, involved in cellular processes such as immune function, cell division, thyroid hormone metabolism, and redox handling. Built upon strengthening evidence that insulin-secreting pancreatic β-cells are a primary target of arsenic's metabolic toxicity and our preliminary studies demonstrating that selenoprotein deficiency augments arsenic's adverse effects on glucose metabolism, we propose the following central hypothesis: selenoproteins play an essential role in preserving glucose homeostasis by protecting insulin-secreting pancreatic β-cells from arsenic-induced dysfunction. To address this hypothesis, in Specific Aim 1 we will employ a novel β- cell-specific knockout of selenoproteins to examine the impact of this tissue-specific alteration on whole-body energy physiology as well as pancreatic islet architecture. To understand how reducing exposure to arsenic impacts diabetes risk, in Specific Aim 2 we will interrogate the conjecture that selenoproteins are required for recovery from arsenic-induced impairments in glucose metabolism; moreover, we will employ synchrotron X- ray fluorescence microscopy to perform tissue-level mapping of arsenic and selenium in pancreatic tissue to test the hypothesis that selenoproteins promote metabolic recovery by protecting pancreatic islets from arsenic accumulation and facilitating its clearance. In Specific Aim 3 we will expand upon our in vivo and cell line data to define the cellular defects in β-cell physiology induced by arsenic that are exacerbated by selenoprotein deficiency. In particular, we will focus on aspects of cellular physiology for which evidence suggests arsenic and selenium/selenoproteins have opposing actions, namely oxidative stress, AMP-activated protein kinase activity, and ATP generation. Furthermore, this aim will narrow in on a specific selenoprotein implicated in diabetes risk, glutathione peroxidase 1 (GPx1), to determine how this enzyme impacts arsenic-induced β-cell dysfunction and to ascertain whether common allelic variations in GPx1 account for differential sensitivity to arsenic-induced diabetes risk in humans. Collectively, the proposed studies will provide new knowledge regarding the essential role of selenoproteins in resisting arsenic-induced disruptions in glucose homeostasis, including identification of populations at heightened risk due to coexisting selenium deficiency and endemic arsenic exposure as well as those with polymorphisms in selenoproteins that enhance arsenic sensitivity.
项目概要/摘要 预计到 2040 年,糖尿病将影响全球 6.42 亿人,糖尿病是一种毁灭性的代谢疾病, 与环境毒物的联系越来越紧密,这种具有巨大公共卫生意义的污染物是。 砷,污染了全球超过 1 亿人的饮用水,其中包括许多生活在 然而,美国的流行病学证据表明砷暴露与糖尿病有关; 砷会增加糖尿病风险,而调节这种风险的因素仍不完全清楚。 已知砷和必需元素硒具有相反的生物作用 近 80 年来,硒被纳入 25 种独特的蛋白质(硒蛋白)中,参与 细胞过程,如免疫功能、细胞分裂、甲状腺激素代谢和氧化还原处理。 加强证据表明分泌胰岛素的胰腺 β 细胞是砷的主要目标 代谢毒性和我们的初步研究表明,硒蛋白缺乏会增加砷的毒性 对糖代谢的不利影响,我们提出以下中心假设:硒蛋白发挥 通过保护分泌胰岛素的胰腺 β 细胞在维持葡萄糖稳态中发挥重要作用 为了解决这一假设,在具体目标 1 中,我们将采用一种新型 β-。 细胞特异性敲除硒蛋白,以检查这种组织特异性改变对全身的影响 能量生理学以及胰岛结构了解如何减少砷暴露。 影响糖尿病风险,在具体目标 2 中,我们将质疑硒蛋白是必需的猜想 从砷引起的葡萄糖代谢损伤中恢复;此外,我们将采用同步加速器 X- 射线荧光显微镜对胰腺组织中的砷和硒进行组织水平绘图 检验硒蛋白通过保护胰岛免受砷侵害来促进代谢恢复的假设 在具体目标 3 中,我们将扩展我们的体内和细胞系数据。 确定砷引起的 β 细胞生理学细胞缺陷,并因硒蛋白而加剧 特别是,我们将重点关注有证据表明砷存在的细胞生理学方面。 硒/硒蛋白具有相反的作用,即氧化应激、AMP激活的蛋白激酶 此外,这一目标将集中在与此相关的特定硒蛋白上。 糖尿病风险,谷胱甘肽过氧化物酶 1 (GPx1),以确定该酶如何影响砷诱导的 β 细胞 功能障碍并确定 GPx1 中常见的等位基因变异是否解释了对 总的来说,拟议的研究将提供新的知识。 关于硒蛋白在抵抗砷引起的葡萄糖稳态破坏中的重要作用, 包括识别因缺硒和地方病共存而面临胃肠道风险的人群 砷暴露以及具有增强砷敏感性的硒蛋白多态性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert M Sargis其他文献

Robert M Sargis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert M Sargis', 18)}}的其他基金

Protection against Arsenic-Induced Neurologic Defects by Brain DHA Enrichment
通过富含大脑 DHA 预防砷诱发的神经系统缺陷
  • 批准号:
    9806012
  • 财政年份:
    2019
  • 资助金额:
    $ 49.94万
  • 项目类别:
Protection against Arsenic-Induced Neurologic Defects by Brain DHA Enrichment
通过富含大脑 DHA 预防砷诱发的神经系统缺陷
  • 批准号:
    10018911
  • 财政年份:
    2019
  • 资助金额:
    $ 49.94万
  • 项目类别:
Selenoproteins in Arsenic-Induced Metabolic Dysfunction
砷引起的代谢功能障碍中的硒蛋白
  • 批准号:
    10328235
  • 财政年份:
    2018
  • 资助金额:
    $ 49.94万
  • 项目类别:
Metabolic Impact of Fetal or Adult Exposure to Environmental Endocrine Disruptors
胎儿或成人暴露于环境内分泌干扰物的代谢影响
  • 批准号:
    8723826
  • 财政年份:
    2013
  • 资助金额:
    $ 49.94万
  • 项目类别:
Metabolic Impact of Fetal or Adult Exposure to Environmental Endocrine Disruptors
胎儿或成人暴露于环境内分泌干扰物的代谢影响
  • 批准号:
    8582434
  • 财政年份:
    2013
  • 资助金额:
    $ 49.94万
  • 项目类别:
Environmental Endocrine Disruption of Adipocyte Metabolism
环境内分泌对脂肪细胞代谢的干扰
  • 批准号:
    8265337
  • 财政年份:
    2010
  • 资助金额:
    $ 49.94万
  • 项目类别:
Environmental Endocrine Disruption of Adipocyte Metabolism
环境内分泌对脂肪细胞代谢的干扰
  • 批准号:
    7953162
  • 财政年份:
    2010
  • 资助金额:
    $ 49.94万
  • 项目类别:
Environmental Endocrine Disruption of Adipocyte Metabolism
环境内分泌对脂肪细胞代谢的干扰
  • 批准号:
    8462609
  • 财政年份:
    2010
  • 资助金额:
    $ 49.94万
  • 项目类别:
Environmental Endocrine Disruption of Adipocyte Metabolism
环境内分泌对脂肪细胞代谢的干扰
  • 批准号:
    8144891
  • 财政年份:
    2010
  • 资助金额:
    $ 49.94万
  • 项目类别:
Environmental Endocrine Disruption of Adipocyte Metabolism
环境内分泌对脂肪细胞代谢的干扰
  • 批准号:
    8660690
  • 财政年份:
    2010
  • 资助金额:
    $ 49.94万
  • 项目类别:

相似国自然基金

AMPK通过调控Smurf1的SUMO化抑制创伤性异位骨化的研究
  • 批准号:
    31900852
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
血管微环境中内皮细胞AMPK抑制心肌纤维化的功能与机制研究
  • 批准号:
    81800273
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于AMPK-FXR-BSEP介导的齐墩果酸所致胆汁淤积性肝损伤作用机制研究
  • 批准号:
    81760678
  • 批准年份:
    2017
  • 资助金额:
    35.0 万元
  • 项目类别:
    地区科学基金项目
基于AMPK信号通路研究菝葜黄酮调控脂类代谢分子机制
  • 批准号:
    81760157
  • 批准年份:
    2017
  • 资助金额:
    32.0 万元
  • 项目类别:
    地区科学基金项目
PRKAG2基因自发新突变K485E引起心脏电生理异常的机制研究
  • 批准号:
    81400259
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Decoding AMPK-dependent regulation of DNA methylation in lung cancer
解码肺癌中 DNA 甲基化的 AMPK 依赖性调节
  • 批准号:
    10537799
  • 财政年份:
    2023
  • 资助金额:
    $ 49.94万
  • 项目类别:
Role of AMPK in melanoma brain metastasis
AMPK 在黑色素瘤脑转移中的作用
  • 批准号:
    10927688
  • 财政年份:
    2023
  • 资助金额:
    $ 49.94万
  • 项目类别:
Role of AMPK in melanoma brain metastasis
AMPK 在黑色素瘤脑转移中的作用
  • 批准号:
    10567049
  • 财政年份:
    2023
  • 资助金额:
    $ 49.94万
  • 项目类别:
Exercise and muscle mitochondria in Alzheimer's Disease
阿尔茨海默病中的运动和肌肉线粒体
  • 批准号:
    10740455
  • 财政年份:
    2023
  • 资助金额:
    $ 49.94万
  • 项目类别:
Regulation of Elevated Postexercise Insulin-stimulated Glucose Uptake by Skeletal Muscle
运动后骨骼肌对胰岛素刺激的葡萄糖摄取升高的调节
  • 批准号:
    10834392
  • 财政年份:
    2023
  • 资助金额:
    $ 49.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了