Mechanotransduction in Meniscus Health and Repair
半月板健康和修复中的机械传导
基本信息
- 批准号:10091311
- 负责人:
- 金额:$ 40.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-15 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:ADAMTSAnabolismBiochemicalBiologicalBiological ModelsBiomechanicsCalciumCalcium SignalingCartilageCatabolismCell ProliferationCell physiologyCellsChemicalsClinicalCollagenCyclic AMPDegenerative polyarthritisDevelopmentDinoprostoneDiseaseEquilibriumExerciseExtracellular MatrixFamily suidaeGene ExpressionGoalsHealthHumanImmobilizationImmunohistochemistryIn VitroInflammatoryInflammatory ResponseIntercellular FluidInterleukin-1JointsKneeLeadMAP Kinase GeneMatrix MetalloproteinasesMechanical StimulationMechanicsMediatingMediator of activation proteinMeniscus structure of jointMetabolicMetabolismModelingOperative Surgical ProceduresOryctolagus cuniculusPainPathologicPathologyPathway interactionsPatientsPharmaceutical PreparationsPhysiologicalPlayProcessRoleSepharoseSignal PathwaySignal TransductionSurgical suturesTestingTissue EngineeringTissuesTranslatingUnited StatesVanilloidWestern BlottingWorkcell motilitycytokinedisabilityexperiencefluid flowinhibitor/antagonistjoint injuryjoint loadingmechanical loadmechanical propertiesmechanotransductionmeniscal tearmeniscus injurymonolayernew therapeutic targetpreventprotein expressionreceptorrepair modelrepairedresponseshear stresstissue regenerationtissue repairtranscriptome sequencing
项目摘要
ABSTRACT.
Meniscal injuries are a significant clinical problem as each year 850,000 meniscal surgeries are performed in the
United States and nearly twice as many worldwide. Meniscal tears in the avascular inner zone of the tissue do
not heal well with suturing or conservative treatments and can ultimately lead to the development of osteoarthritis
(OA). Therefore, new strategies are needed to enhance endogenous meniscus repair and tissue regeneration.
The menisci play a critical biomechanical role in the knee, providing load support, joint stability, and congruity.
Meniscus tissue is maintained through a balance of anabolic and catabolic activities of meniscus cells. These
cellular activities are controlled not only by biochemical factors in the joint but also by physical factors associated
with joint loading. Mechanobiology, which is the influence of mechanical factors on the biologic response of cells,
is important in converting physical signals into metabolic and inflammatory responses in meniscus. However,
the mechanisms by which mechanical signals are transduced in meniscus cells have yet to be identified. Our
overall goal is to identify critical meniscus mechanotransduction pathways and modulate these
pathways to promote meniscus repair and prevent OA development.
Our work has shown that transient receptor potential vanilloid 4 (TRPV4) is a critical component in cartilage
mechanotransduction and metabolism. The activation of TRPV4 can block IL-1 induced catabolic responses and
also increases cell migration and proliferation, which are important processes to enhance tissue repair. While
we have found that TRPV4 is expressed in the meniscus, the function of this mediator in meniscus health and
disease is currently unknown. In this proposal, we will determine how mechanotransduction occurs through
TRPV4 in meniscus and identify modulators of this pathway that will be used to enhance tissue repair and prevent
OA development. We hypothesize that mechanotransduction by TRPV4 plays a key role in meniscus metabolism
and can be modulated to enhance meniscus repair and prevent the development of OA. In this proposal, we will
determine the effects of mechanical stimulation on TRPV4-mediated metabolism in healthy meniscus cells.
Next, we will elucidate alterations in TRPV4-mediated mechanotransduction pathways in meniscus pathology.
Finally, we will enhance integrative meniscus repair and prevent the development of OA by modulation of
mechanotransduction pathways. In this proposal, we will identify the key signaling pathways downstream of
TRPV4 that may function as novel drug targets to 1) treat patients with immobilized joints to simulate exercise
and maintain joint health; 2) enhance meniscus tissue regeneration using tissue engineering strategies; and 3)
enhance meniscus repair and prevent the development of OA. Novel therapeutic targets identified in this
proposal can subsequently be developed into drugs to enhance meniscus repair and prevent the development
of OA.
抽象的。
半月板损伤是一个重要的临床问题,因为每年有 850,000 例半月板手术在
美国的数量几乎是全球的两倍。组织内无血管区域的半月板撕裂会造成
缝合或保守治疗不能很好地治愈,最终可能导致骨关节炎的发展
(办公自动化)。因此,需要新的策略来增强内源性半月板修复和组织再生。
半月板在膝关节中发挥着关键的生物力学作用,提供负载支撑、关节稳定性和一致性。
半月板组织通过半月板细胞的合成代谢和分解代谢活动的平衡来维持。这些
细胞活动不仅受到关节中的生化因素的控制,还受到相关物理因素的控制。
联合加载。力学生物学,即机械因素对细胞生物反应的影响,
对于将物理信号转化为半月板的代谢和炎症反应非常重要。然而,
半月板细胞中机械信号转导的机制尚未确定。我们的
总体目标是确定关键的半月板机械传导途径并调节这些途径
促进半月板修复和预防 OA 发展的途径。
我们的工作表明瞬时受体电位香草酸 4 (TRPV4) 是软骨的关键成分
力传导和代谢。 TRPV4 的激活可以阻断 IL-1 诱导的分解代谢反应
还增加细胞迁移和增殖,这是增强组织修复的重要过程。尽管
我们发现TRPV4在半月板中表达,该介质在半月板健康中的功能以及
疾病目前未知。在本提案中,我们将确定力传导如何通过
半月板中的 TRPV4 并确定该途径的调节剂,该调节剂将用于增强组织修复和预防
OA开发。我们假设 TRPV4 的机械传导在半月板代谢中发挥关键作用
并可进行调节以增强半月板修复并预防 OA 的发展。在本提案中,我们将
确定机械刺激对健康半月板细胞中 TRPV4 介导的代谢的影响。
接下来,我们将阐明半月板病理学中 TRPV4 介导的机械转导途径的改变。
最后,我们将通过调节半月板的综合修复来预防 OA 的发展。
力传导途径。在本提案中,我们将确定下游的关键信号通路
TRPV4 可作为新型药物靶点,用于 1) 治疗关节固定的患者以模拟运动
并保持关节健康; 2)利用组织工程策略增强半月板组织再生;和 3)
增强半月板修复并预防 OA 的发展。本研究中确定的新治疗靶点
该提案随后可以开发成药物,以增强半月板修复并预防发展
OA。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy L McNulty其他文献
Amy L McNulty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy L McNulty', 18)}}的其他基金
Mechanotransduction in Meniscus Health and Repair
半月板健康和修复中的机械传导
- 批准号:
10543803 - 财政年份:2019
- 资助金额:
$ 40.51万 - 项目类别:
Mechanotransduction in Meniscus Health and Repair
半月板健康和修复中的机械传导
- 批准号:
10322100 - 财政年份:2019
- 资助金额:
$ 40.51万 - 项目类别:
Strategies to Enhance Integrative Repair of the Meniscus
加强半月板综合修复的策略
- 批准号:
7330027 - 财政年份:2008
- 资助金额:
$ 40.51万 - 项目类别:
Strategies to Enhance Integrative Repair of the Meniscus
加强半月板综合修复的策略
- 批准号:
7534803 - 财政年份:2008
- 资助金额:
$ 40.51万 - 项目类别:
Strategies to Enhance Integrative Repair of the Meniscus
加强半月板综合修复的策略
- 批准号:
7769530 - 财政年份:2008
- 资助金额:
$ 40.51万 - 项目类别:
相似国自然基金
知母甾体皂苷生物合成关键基因的克隆及生化功能研究
- 批准号:81874333
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
分枝杆菌aceE基因影响细胞壁合成代谢的机制研究
- 批准号:31600107
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
油菜重要候选基因BnaA9CHLSYN对籽粒维生素E合成产生关键性作用的分子机制研究
- 批准号:31671723
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
10-HGO催化的环化反应高效调控紫草宁合成的生化及分子机制解析
- 批准号:31470384
- 批准年份:2014
- 资助金额:82.0 万元
- 项目类别:面上项目
土壤干旱对芭蕉芋根茎淀粉合成与品质的影响及生理分子机理
- 批准号:31460371
- 批准年份:2014
- 资助金额:50.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 40.51万 - 项目类别:
Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
- 批准号:
10508305 - 财政年份:2023
- 资助金额:
$ 40.51万 - 项目类别:
Mechanistic characterization of vaginal microbiome-metabolome associations and metabolite-mediated host inflammation
阴道微生物组-代谢组关联和代谢物介导的宿主炎症的机制特征
- 批准号:
10663410 - 财政年份:2023
- 资助金额:
$ 40.51万 - 项目类别:
Investigating the molecular mechanisms of glycosaminoglycan assembly
研究糖胺聚糖组装的分子机制
- 批准号:
10715380 - 财政年份:2023
- 资助金额:
$ 40.51万 - 项目类别:
Investigating neofunctionalized alpha-carbonic anhydrases as an emerging class of biosynthetic enzyme in plant and animal metabolism
研究新功能化α-碳酸酐酶作为植物和动物代谢中新兴的一类生物合成酶
- 批准号:
10711678 - 财政年份:2023
- 资助金额:
$ 40.51万 - 项目类别: