Genetic regulation of progenitor cells in appendicular skeletal development
祖细胞在阑尾骨骼发育中的遗传调控
基本信息
- 批准号:10251117
- 负责人:
- 金额:$ 32.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectApical Ectodermal RidgeBiochemicalBiologyBirthChIP-seqCharacteristicsCongenital Limb DeformitiesDataDefectDevelopmentDevelopmental ProcessEmbryoEnergy SupplyEnhancersFailureFibroblast Growth FactorForelimbFoundationsFundingGenesGeneticGenetic TranscriptionGenomicsGlucoseGlycolysisGoalsHindlimbHomeobox GenesHumanKnock-outKnowledgeLateralLimb BudLimb DevelopmentLimb structureMediatingMedicineMesodermMetabolicMethodsModelingMolecularMorphogenesisMutationOrganParaxial MesodermPatternPlayProcessRegenerative MedicineRegulationRepressionResearchRoleSignal TransductionSkeletal DevelopmentSkeletonSomitesSpecific qualifier valueSpecificityTailTestingTissuesTo specifyWorkZinc Fingersconditional knockoutdesignenzyme activityexperimental studygastrulationgenetic analysisinsightmetabolomemutantprogenitorskeletalskeletal disorderskeletal stem cellstem cellstranscription factortranscriptome sequencing
项目摘要
PROJECT SUMMARY
Congenital limb malformations, caused by abnormal limb development, occur in one in 1,000 live human births.
Therefore, understanding the mechanisms of limb development is relevant to biology and medicine. Limb
development starts with the specification of a discrete region of the lateral plate mesoderm into limb
progenitors, which gives rise to the limb bud. In the last several decades, the research field intensely focused
on understanding the mechanisms by which signaling centers in limb buds regulate patterning of limb buds,
leading to formation of limb skeletons. However, we have limited knowledge about how limb progenitors are
specified and what mechanisms regulate their initial differentiation before the establishment of limb bud
signaling centers; yet, these processes are essential for correct limb development. Studies in the last decades
showed that distinct mechanisms operate on lateral plate mesoderm and limb progenitors prior to establishing
limb bud signaling centers. For example, we found that deletion of Sall4, encoding a zinc finger transcription
factor, approximately two days before the onset of limb development, resulted in severe defects specifically in
hindlimbs, while deletion at later stages had no or subtle effect. In our preliminary studies, we found that
simultaneous inactivation of Sall4, Irx3 and Irx5 (Irx3/5) caused the absence of hindlimbs with the loss of
expression of hindlimb progenitor-specific genes, such as Isl1. This result indicates that combined function of
Sall4 and Irx3/5 specifies lateral plate mesoderm into hindlimb progenitors. In Aim 1, our goal is to elucidate
the molecular mechanisms of hindlimb progenitor specification. We will determine whether SALL4 and IRX3/5
redundantly and directly regulate Isl1 through its enhancer. We will determine genes that act downstream of
Sall4 and Irx3/5 to specify hindlimb progenitors by genomic experiments. We will determine their functions in
specifying hindlimb progenitors by genetic knockout approaches. We also obtained data, strongly suggesting
that Sall4 knockout causes increased glycolysis in limb progenitors, when endogenous glycolysis is
transitioning from high to low activity. Recent studies provided evidence that, beyond supplying energy,
glycolysis mediates fibroblast growth factor signaling in the tail bud and regulates body elongation. Fibroblast
growth factor signaling is one of earliest signaling that regulates limb progenitor differentiation. In Aim 2, we will
test an intriguing hypothesis that Sall4-dependent repression of glycolysis regulates differentiation of limb
progenitors. We will construct metabolomes of wild type and Sall4 mutant limb progenitors to understand
metabolic status and the changes by loss of Sall4. We will test the role of glycolysis by reducing glycolysis in
Sall4 mutant embryos and determine their differentiation, as well as increasing glycolysis in embryos without
mutations. This proposal will generate important basic information on the specification and differentiation of
limb progenitors, which are fundamental initial processes of limb development.
项目摘要
由肢体发育异常引起的先天性肢体畸形发生在1000名活人出生中。
因此,了解肢体发育的机制与生物学和医学有关。肢
开发始于将侧板中胚层的离散区域的规范置于肢体
祖细胞,产生肢体芽。在过去的几十年中,研究领域非常集中
在理解信号中心在肢体芽中的机制调节肢体芽的模式,
导致肢体骨骼的形成。但是,我们对肢体祖细胞的了解有限
在建立肢体之前,指定和哪些机制调节其初始差异
信号传导中心;但是,这些过程对于正确的肢体开发至关重要。过去几十年的研究
表明在建立之前,不同的机制在侧板中胚层和肢体祖细胞上起作用
肢体芽信号中心。例如,我们发现SALL4的删除,编码锌指转录
在肢体发育开始前约两天,因素引起了严重的缺陷
后肢,而后来的删除却没有微妙的效果。在我们的初步研究中,我们发现
SALL4,IRX3和IRX5(IRX3/5)同时失活导致缺乏后肢
后肢祖细胞特异性基因的表达,例如ISL1。该结果表明
SALL4和IRX3/5将侧板中胚层指定为后肢祖细胞。在AIM 1中,我们的目标是阐明
后肢祖细胞规范的分子机制。我们将确定SALL4和IRX3/5是否
通过其增强子进行冗余而直接调节ISL1。我们将确定在下游的基因
SALL4和IRX3/5通过基因组实验指定后肢祖细胞。我们将确定它们的功能
通过遗传敲除方法指定后肢祖细胞。我们还获得了数据,强烈建议
当内源性糖酵解是
从高活动过渡到低活动。最近的研究提供了证据,表明除了提供能源外,
糖酵解介导尾芽中的成纤维细胞生长因子信号传导并调节身体伸长。成纤维细胞
生长因子信号传导是调节肢体祖细胞分化的最早信号传导之一。在AIM 2中,我们将
检验一个有趣的假设,即SALL4依赖性糖酵解调节肢体的分化
祖先。我们将构建野生型和SALL4突变体肢体祖细胞的代谢组
代谢状态和SALL4的变化。我们将通过减少糖酵解来测试糖酵解的作用
SALL4突变胚胎并确定其分化,并增加胚胎中的糖酵解
突变。该建议将生成有关规范和差异化的重要基本信息
肢体祖细胞,是肢体发育的基本初始过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yasuhiko Kawakami其他文献
Yasuhiko Kawakami的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yasuhiko Kawakami', 18)}}的其他基金
Genetic Regulation of Progenitor Cells in Appendicular Skeletal Development
附肢骨骼发育中祖细胞的遗传调控
- 批准号:
9251238 - 财政年份:2013
- 资助金额:
$ 32.86万 - 项目类别:
Genetic Regulation of Progenitor Cells in Appendicular Skeletal Development
附肢骨骼发育中祖细胞的遗传调控
- 批准号:
8836975 - 财政年份:2013
- 资助金额:
$ 32.86万 - 项目类别:
Genetic regulation of progenitor cells in appendicular skeletal development
祖细胞在阑尾骨骼发育中的遗传调控
- 批准号:
10005889 - 财政年份:2013
- 资助金额:
$ 32.86万 - 项目类别:
Genetic regulation of progenitor cells in appendicular skeletal development
祖细胞在阑尾骨骼发育中的遗传调控
- 批准号:
10478035 - 财政年份:2013
- 资助金额:
$ 32.86万 - 项目类别:
Genetic Regulation of Progenitor Cells in Appendicular Skeletal Development
附肢骨骼发育中祖细胞的遗传调控
- 批准号:
8639484 - 财政年份:2013
- 资助金额:
$ 32.86万 - 项目类别:
Genetic Regulation of Progenitor Cells in Appendicular Skeletal Development
附肢骨骼发育中祖细胞的遗传调控
- 批准号:
8476774 - 财政年份:2013
- 资助金额:
$ 32.86万 - 项目类别:
Limb-Type Specific Distinct Upstream Regulation of a Common Hand2-Shh Pathway
常见 Hand2-Shh 通路的肢体类型特异性独特上游调节
- 批准号:
8544979 - 财政年份:2012
- 资助金额:
$ 32.86万 - 项目类别:
Limb-type specific distinct upstream regulation of a common Hand2-Shh pathway
常见 Hand2-Shh 通路的肢体类型特异性独特上游调节
- 批准号:
8424496 - 财政年份:2012
- 资助金额:
$ 32.86万 - 项目类别:
相似海外基金
Genetic regulation of progenitor cells in appendicular skeletal development
祖细胞在阑尾骨骼发育中的遗传调控
- 批准号:
10005889 - 财政年份:2013
- 资助金额:
$ 32.86万 - 项目类别:
Genetic regulation of progenitor cells in appendicular skeletal development
祖细胞在阑尾骨骼发育中的遗传调控
- 批准号:
10478035 - 财政年份:2013
- 资助金额:
$ 32.86万 - 项目类别:
Mutagenesis of Tbx3: a model of ulnar-mammary syndrome
Tbx3 突变:尺乳综合征模型
- 批准号:
7929862 - 财政年份:2009
- 资助金额:
$ 32.86万 - 项目类别:
Functional Analysis of Sprouty Genes in Limb Development
Sprouty 基因在肢体发育中的功能分析
- 批准号:
7467928 - 财政年份:2004
- 资助金额:
$ 32.86万 - 项目类别:
Mutagenesis of Tbx3: a model of ulnar-mammary syndrome
Tbx3 突变:尺乳综合征模型
- 批准号:
7330353 - 财政年份:2004
- 资助金额:
$ 32.86万 - 项目类别: