Programmable, Soft Optical Waveguide for Optogenetics
用于光遗传学的可编程软光波导
基本信息
- 批准号:10251842
- 负责人:
- 金额:$ 7.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-02 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlginatesApplications GrantsBrainBrain regionChronicDevicesElementsEmploymentEnvironmentEpilepsyEvaluationExhibitsExposure toFutureGoalsHeightHumanHydrogelsImplantIndividualInflammatory ResponseInheritedLateralLightMechanicsMemoryMethodsMicroelectrodesModelingOpticsParkinson DiseasePathway interactionsPerformancePhase TransitionPolymersPositioning AttributeProcessPropertyPublic HealthRefractive IndicesResolutionRiskRoboticsRodentRouteSepharoseShapesSignal TransductionStructureSystemTechnologyTemperatureTestingTransition TemperatureTraumabasebiomaterial compatibilitybrain tissuedensitydesignexperimental studyimplantable deviceimprovedin vivolight intensitylight scatteringmechanical behaviormechanical propertiesnervous system disorderneuroregulationnoveloptogeneticsprogramsrelating to nervous systemsuccessviscoelasticity
项目摘要
Project Summary
The proposed project aims at developing a programmable and soft optical waveguide which will enable
precise and uniform light delivery, provide large lateral access, and minimize inflammatory response in the brain
tissue. Combination of these functions in one device is highly demanded for maximizing potentials of
optogenetics in studying brain functions and treating human’s neurological diseases, but it is still not accessible
in current optogenetic probes and their integrated optoelectronic devices. The proposed waveguide will be made
of interconnected shanks whose core is a biocompatible shape memory polymer (SMP) cladded by alginate
hydrogel layers, which has a lower refractive index (RI) than that of the SMP. This RI mismatch will help to realize
total internal reflection of light in the interface of the SMP and the hydrogel layers. Above the phase transition
temperature (< 37 ℃), the SMP will become highly transparent and show soft-robotic actuation. This actuation
force will drive the highly compact optical waveguide—for easy insertion to the brain tissue—to form a
preprogrammed three-dimensional (3D) wavy and expanding shape. With defined optical apertures along the
individual shank, the light can be uniformly and precisely delivered to the brain tissue. The inherited
biocompatibility and softness of the SMP and the hydrogel will cause little or no inflammatory response to the
brain tissue. To our knowledge, it will be the first attempt of developing such a type of optical waveguide.
To accomplish the proposed goal optical and mechanical structures of the waveguide will be first designed.
Then numerical models will be developed to optimize the static and dynamic actuation processes, which will
serve as the sophisticated design principles for the experiments. The optical waveguide will be fabricated,
programmed. Its light transport and shape actuation performance will be evaluated. The resulting SMP and
alginate hydrogel will have the optimum refractive indices and mechanical properties. Their interface will be
strong and smooth for minimizing the light scattering. The waveguide is expected to show satisfactory shape
actuation and little light loss in 0.6% agarose hydrogel that mimics the viscoelastic environment of brain tissue.
If success, this proposed technology will be transformative. First of all, it will pave the intellectual and
technological way to provide a novel platform for implantable devices with new functionalities which other
ordinary devices cannot offer, such as truly 3D interfaces, precise and uniform light delivery, minimized damage
to the brain. All of them will help to deepen the understanding of brain functions. Moreover, integration of the
microelectrodes that can do signal recording with the waveguide will empower the devices the functions of
stimulation and recording. They can be further developed into optogenetics-based neuromodulation therapies
for treating human’s neurological diseases such as Parkinson’s disease and epilepsy, which are highly relevant
to public health. Finally, concepts and technologies of this 3D neural interface introduced here may result in bio-
electronic-optoelectronic systems that will show responsive and adaptive features in future.
项目摘要
拟议的项目旨在开发可编程和软光学波导,这将使
精确且均匀的光输送,提供较大的侧向通道,并最大程度地减少大脑的炎症反应
组织。高度要求在一台设备中使用这些功能的组合,以最大程度地提高电位
研究脑功能和治疗人的神经疾病时的光遗传学,但仍然无法使用
在当前的光遗传探针及其集成的光电设备中。提出的波导将进行
相互连接的小腿的核心是由算法覆盖的生物相容性形状记忆聚合物(SMP)
水凝胶层的折射率(RI)低于SMP。此RI不匹配将有助于实现
SMP和水凝胶层界面中光的总内部反射。相过渡上方
温度(<37°C),SMP将变得高度透明并显示出软动态致动。这个驱动
力将驱动高度紧凑的光学波导(即可轻松插入脑组织)形成
预编程的三维(3D)波浪形和膨胀形状。沿着定义的光孔
单个小腿,光可以均匀,精确地递送到脑组织。继承
SMP和水凝胶的生物相容性和柔软度几乎不会引起对炎症的反应
脑组织。据我们所知,这将是开发这种光学波导的首次尝试。
为了完成波导的提议的目标光学和机械结构,将首先设计。
然后将开发数值模型以优化静态和动态的驱动过程,该过程将
作为实验的复杂设计原理。光学波导将被制造,
程序。将评估其光运输和形状致动性能。由此产生的SMP和
藻酸盐水凝胶将具有最佳的折射率和机械性能。他们的界面将是
坚固而光滑,以最大程度地散射。预计波导将显示出满意的形状
模仿脑组织的粘弹性环境的0.6%琼脂糖水凝胶中的驱动和光损失很少。
如果成功,这项提出的技术将具有变革性。首先,它将铺平知识分子和
提供具有新功能的可植入设备的新型平台的技术方法
普通设备无法提供,例如真正的3D接口,精度和均匀的光输送,最小化损坏
到大脑。所有这些都将有助于加深对大脑功能的理解。而且,集成
可以通过波导进行信号记录的微电极将使设备能力
刺激和记录。它们可以进一步发展为基于光遗传学的神经调节疗法
治疗人类的神经系统疾病,例如帕金森氏病和癫痫病,它们非常相关
到公共卫生。最后,此处介绍的3D神经界面的概念和技术可能会导致生物
将来会显示响应式和适应性特征的电子方式。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Photocured Bio-based Shape Memory Thermoplastics for Reversible Wet Adhesion.
- DOI:10.1016/j.cej.2023.144226
- 发表时间:2023-08
- 期刊:
- 影响因子:15.1
- 作者:Yu-Chung Wu;Changhua Su;Shao-heng Wang;Bujingda Zheng;Alireza Mahjoubnia;Kianoosh Sattari;Hanwen Zhang;J. Meister;Guoliang Huang;Jian Lin
- 通讯作者:Yu-Chung Wu;Changhua Su;Shao-heng Wang;Bujingda Zheng;Alireza Mahjoubnia;Kianoosh Sattari;Hanwen Zhang;J. Meister;Guoliang Huang;Jian Lin
Digital Light 4D Printing of Bioresorbable Shape Memory Elastomers for Personalized Biomedical Implantation.
- DOI:10.1016/j.actbio.2024.02.009
- 发表时间:2024-02
- 期刊:
- 影响因子:9.7
- 作者:Alireza Mahjoubnia;Dunpeng Cai;Yuchao Wu;Skylar D. King;Pooya Torkian;Andy C. Chen;R. Talaie;Shi-You Chen;Jian Lin
- 通讯作者:Alireza Mahjoubnia;Dunpeng Cai;Yuchao Wu;Skylar D. King;Pooya Torkian;Andy C. Chen;R. Talaie;Shi-You Chen;Jian Lin
4D printing of biocompatible, hierarchically porous shape memory polymeric structures.
- DOI:10.1016/j.bioadv.2023.213575
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Graham Bond;Alireza Mahjoubnia;Wen-dong Zhao;Skylar D. King;Shi Chen;Jian Lin
- 通讯作者:Graham Bond;Alireza Mahjoubnia;Wen-dong Zhao;Skylar D. King;Shi Chen;Jian Lin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian Lin其他文献
Jian Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian Lin', 18)}}的其他基金
Regulation of Intraocular Pressure via a Novel Adjustable Glaucoma Drainage Device
通过新型可调节青光眼引流装置调节眼压
- 批准号:
10735637 - 财政年份:2023
- 资助金额:
$ 7.35万 - 项目类别:
相似国自然基金
磷酸盐耦合作用下亨氏马尾藻砷吸收、转运和形态分布的过程研究
- 批准号:42377231
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
河口悬浮颗粒中异养细菌同化硝酸盐的驱动机制与抑藻效应
- 批准号:32370113
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
硝化应激在微囊藻毒素联合亚硝酸盐暴露诱导血-卵泡屏障破坏致卵巢早衰中的作用及分子机制
- 批准号:82273594
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
剩余污泥胞外聚合物中类藻酸盐物质结构及阻燃特性分析研究
- 批准号:52200033
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
硝化应激在微囊藻毒素联合亚硝酸盐暴露诱导血-卵泡屏障破坏致卵巢早衰中的作用及分子机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Developing an Electrochemical Assay to Detect Nerve Regeneration in 3D Scaffolds
开发电化学检测方法来检测 3D 支架中的神经再生
- 批准号:
8444879 - 财政年份:2013
- 资助金额:
$ 7.35万 - 项目类别:
Developing an Electrochemical Assay to Detect Nerve Regeneration in 3D Scaffolds
开发电化学检测方法来检测 3D 支架中的神经再生
- 批准号:
8603858 - 财政年份:2013
- 资助金额:
$ 7.35万 - 项目类别:
Corpus luteum mechanical regulation in a tissue-engineered model of ovarian aging
卵巢衰老组织工程模型中黄体的机械调节
- 批准号:
8308731 - 财政年份:2011
- 资助金额:
$ 7.35万 - 项目类别:
Corpus luteum mechanical regulation in a tissue-engineered model of ovarian aging
卵巢衰老组织工程模型中黄体的机械调节
- 批准号:
8203279 - 财政年份:2011
- 资助金额:
$ 7.35万 - 项目类别:
Novel Nanocomposite Formulation for Highly Effective Oral Insulin Delivery
用于高效口服胰岛素输送的新型纳米复合制剂
- 批准号:
7482498 - 财政年份:2008
- 资助金额:
$ 7.35万 - 项目类别: