Programmable, Soft Optical Waveguide for Optogenetics
用于光遗传学的可编程软光波导
基本信息
- 批准号:10251842
- 负责人:
- 金额:$ 7.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-02 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlginatesApplications GrantsBrainBrain regionChronicDevicesElementsEmploymentEnvironmentEpilepsyEvaluationExhibitsExposure toFutureGoalsHeightHumanHydrogelsImplantIndividualInflammatory ResponseInheritedLateralLightMechanicsMemoryMethodsMicroelectrodesModelingOpticsParkinson DiseasePathway interactionsPerformancePhase TransitionPolymersPositioning AttributeProcessPropertyPublic HealthRefractive IndicesResolutionRiskRoboticsRodentRouteSepharoseShapesSignal TransductionStructureSystemTechnologyTemperatureTestingTransition TemperatureTraumabasebiomaterial compatibilitybrain tissuedensitydesignexperimental studyimplantable deviceimprovedin vivolight intensitylight scatteringmechanical behaviormechanical propertiesnervous system disorderneuroregulationnoveloptogeneticsprogramsrelating to nervous systemsuccessviscoelasticity
项目摘要
Project Summary
The proposed project aims at developing a programmable and soft optical waveguide which will enable
precise and uniform light delivery, provide large lateral access, and minimize inflammatory response in the brain
tissue. Combination of these functions in one device is highly demanded for maximizing potentials of
optogenetics in studying brain functions and treating human’s neurological diseases, but it is still not accessible
in current optogenetic probes and their integrated optoelectronic devices. The proposed waveguide will be made
of interconnected shanks whose core is a biocompatible shape memory polymer (SMP) cladded by alginate
hydrogel layers, which has a lower refractive index (RI) than that of the SMP. This RI mismatch will help to realize
total internal reflection of light in the interface of the SMP and the hydrogel layers. Above the phase transition
temperature (< 37 ℃), the SMP will become highly transparent and show soft-robotic actuation. This actuation
force will drive the highly compact optical waveguide—for easy insertion to the brain tissue—to form a
preprogrammed three-dimensional (3D) wavy and expanding shape. With defined optical apertures along the
individual shank, the light can be uniformly and precisely delivered to the brain tissue. The inherited
biocompatibility and softness of the SMP and the hydrogel will cause little or no inflammatory response to the
brain tissue. To our knowledge, it will be the first attempt of developing such a type of optical waveguide.
To accomplish the proposed goal optical and mechanical structures of the waveguide will be first designed.
Then numerical models will be developed to optimize the static and dynamic actuation processes, which will
serve as the sophisticated design principles for the experiments. The optical waveguide will be fabricated,
programmed. Its light transport and shape actuation performance will be evaluated. The resulting SMP and
alginate hydrogel will have the optimum refractive indices and mechanical properties. Their interface will be
strong and smooth for minimizing the light scattering. The waveguide is expected to show satisfactory shape
actuation and little light loss in 0.6% agarose hydrogel that mimics the viscoelastic environment of brain tissue.
If success, this proposed technology will be transformative. First of all, it will pave the intellectual and
technological way to provide a novel platform for implantable devices with new functionalities which other
ordinary devices cannot offer, such as truly 3D interfaces, precise and uniform light delivery, minimized damage
to the brain. All of them will help to deepen the understanding of brain functions. Moreover, integration of the
microelectrodes that can do signal recording with the waveguide will empower the devices the functions of
stimulation and recording. They can be further developed into optogenetics-based neuromodulation therapies
for treating human’s neurological diseases such as Parkinson’s disease and epilepsy, which are highly relevant
to public health. Finally, concepts and technologies of this 3D neural interface introduced here may result in bio-
electronic-optoelectronic systems that will show responsive and adaptive features in future.
项目概要
拟议项目旨在开发一种可编程软光波导,这将使
精确且均匀的光传输,提供大的横向通道,并最大限度地减少大脑中的炎症反应
为了最大限度地发挥组织的潜力,迫切需要将这些功能组合在一个设备中。
光遗传学在研究大脑功能和治疗人类神经系统疾病方面发挥着重要作用,但目前仍无法实现
在当前的光遗传学探针及其集成光电器件中,将制成所提出的波导。
相互连接的柄,其核心是生物相容性形状记忆聚合物 (SMP),外层是藻酸盐
水凝胶层的折射率 (RI) 低于 SMP,这种 RI 不匹配将有助于实现。
SMP 和水凝胶层界面上的光全内反射。
在低于 37 ℃ 的温度下,SMP 将变得高度透明并显示软机器人驱动。
力将驱动高度紧凑的光波导——以便于插入脑组织——形成一个
预编程的三维 (3D) 波浪形和扩展形状。
单独的柄,可以将光线均匀、精确地传递到脑组织。
SMP 和水凝胶的生物相容性和柔软度不会对人体造成很少或不会引起炎症反应
据我们所知,这将是开发这种类型的光波导的首次尝试。
为了实现所提出的目标,将首先设计波导的光学和机械结构。
然后将开发数值模型来优化静态和动态驱动过程,这将
作为实验的复杂设计原理,将制造光波导,
其光传输和形状驱动性能将被评估。
藻酸盐水凝胶将具有最佳的折射率和机械性能。
坚固且光滑,可最大限度地减少光散射,预计波导将显示出令人满意的形状。
模拟脑组织粘弹性环境的 0.6% 琼脂糖水凝胶中的驱动和很少的光损失。
如果成功,这项提出的技术将具有变革性,首先,它将为知识和技术铺平道路。
技术方式为具有新功能的植入设备提供新颖的平台
普通设备无法提供的,例如真正的 3D 界面、精确且均匀的光传输、最小化损坏
所有这些都有助于加深对大脑功能的理解。
可以用波导进行信号记录的微电极将使设备具有以下功能:
它们可以进一步发展为基于光遗传学的神经调节疗法。
用于治疗与人类高度相关的神经系统疾病,如帕金森病和癫痫
最后,这里介绍的这种 3D 神经接口的概念和技术可能会导致生物-
未来将表现出响应性和自适应特性的电子光电系统。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Photocured Bio-based Shape Memory Thermoplastics for Reversible Wet Adhesion.
- DOI:10.1016/j.cej.2023.144226
- 发表时间:2023-08
- 期刊:
- 影响因子:15.1
- 作者:Yu-Chung Wu;Changhua Su;Shao-heng Wang;Bujingda Zheng;Alireza Mahjoubnia;Kianoosh Sattari;Hanwen Zhang;J. Meister;Guoliang Huang;Jian Lin
- 通讯作者:Yu-Chung Wu;Changhua Su;Shao-heng Wang;Bujingda Zheng;Alireza Mahjoubnia;Kianoosh Sattari;Hanwen Zhang;J. Meister;Guoliang Huang;Jian Lin
Digital Light 4D Printing of Bioresorbable Shape Memory Elastomers for Personalized Biomedical Implantation.
- DOI:10.1016/j.actbio.2024.02.009
- 发表时间:2024-02
- 期刊:
- 影响因子:9.7
- 作者:Alireza Mahjoubnia;Dunpeng Cai;Yuchao Wu;Skylar D. King;Pooya Torkian;Andy C. Chen;R. Talaie;Shi-You Chen;Jian Lin
- 通讯作者:Alireza Mahjoubnia;Dunpeng Cai;Yuchao Wu;Skylar D. King;Pooya Torkian;Andy C. Chen;R. Talaie;Shi-You Chen;Jian Lin
4D printing of biocompatible, hierarchically porous shape memory polymeric structures.
- DOI:10.1016/j.bioadv.2023.213575
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Graham Bond;Alireza Mahjoubnia;Wen-dong Zhao;Skylar D. King;Shi Chen;Jian Lin
- 通讯作者:Graham Bond;Alireza Mahjoubnia;Wen-dong Zhao;Skylar D. King;Shi Chen;Jian Lin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian Lin其他文献
Jian Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian Lin', 18)}}的其他基金
Regulation of Intraocular Pressure via a Novel Adjustable Glaucoma Drainage Device
通过新型可调节青光眼引流装置调节眼压
- 批准号:
10735637 - 财政年份:2023
- 资助金额:
$ 7.35万 - 项目类别:
相似国自然基金
用于肥厚型心肌病介入治疗的凝血酶-海藻酸盐复合微球消融剂制备机制及其作用机制研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
组织工程用氧化海藻酸盐/聚丙烯酰胺互穿网络均相凝胶的构建、结构与性能研究
- 批准号:
- 批准年份:2019
- 资助金额:41 万元
- 项目类别:地区科学基金项目
金属离子诱导海藻酸盐凝胶多尺度微观结构及外场下的演变机制
- 批准号:51803101
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于两亲性海藻酸盐的载药乳液的微观机制和多尺度模拟
- 批准号:21706045
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
两性离子聚合物/海藻酸锆互穿网络多孔凝胶球的构建及其吸附水中磷酸盐机理研究
- 批准号:51608133
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing an Electrochemical Assay to Detect Nerve Regeneration in 3D Scaffolds
开发电化学检测方法来检测 3D 支架中的神经再生
- 批准号:
8444879 - 财政年份:2013
- 资助金额:
$ 7.35万 - 项目类别:
Developing an Electrochemical Assay to Detect Nerve Regeneration in 3D Scaffolds
开发电化学检测方法来检测 3D 支架中的神经再生
- 批准号:
8603858 - 财政年份:2013
- 资助金额:
$ 7.35万 - 项目类别:
Corpus luteum mechanical regulation in a tissue-engineered model of ovarian aging
卵巢衰老组织工程模型中黄体的机械调节
- 批准号:
8308731 - 财政年份:2011
- 资助金额:
$ 7.35万 - 项目类别:
Corpus luteum mechanical regulation in a tissue-engineered model of ovarian aging
卵巢衰老组织工程模型中黄体的机械调节
- 批准号:
8203279 - 财政年份:2011
- 资助金额:
$ 7.35万 - 项目类别:
Novel Nanocomposite Formulation for Highly Effective Oral Insulin Delivery
用于高效口服胰岛素输送的新型纳米复合制剂
- 批准号:
7482498 - 财政年份:2008
- 资助金额:
$ 7.35万 - 项目类别: