An inflammation-induced fibrosis-on-chip system for the testing of anti-fibrosis drugs
用于测试抗纤维化药物的炎症诱导纤维化芯片系统
基本信息
- 批准号:10241534
- 负责人:
- 金额:$ 45.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAnimal ModelAnimalsAutomobile DrivingBiological MarkersBiological ModelsBiologyBiomechanicsBlood VesselsCellsClinicClinical TrialsCollaborationsCoupledDataDevelopmentDevice or Instrument DevelopmentDiseaseDrug Delivery SystemsDrug ScreeningDrug TargetingEventFDA approvedFibroblastsFibrosisGoalsHealthHistologyHumanIn VitroInflammationInflammatoryJointsLaboratoriesLungMacrophage ActivationMeasurementMediatingMediator of activation proteinMicrofluidicsModelingMyofibroblastPathogenesisPathologyPathway interactionsPerformancePharmaceutical PreparationsProcessPublicationsPulmonary FibrosisResearchResearch PersonnelStructure of parenchyma of lungSurfaceSystemTechnologyTestingTherapeuticTherapeutic EffectTissue EngineeringTissue ModelTissuesTranslationsTreatment Efficacyantifibrotic treatmentbasecell typecomparative efficacydesigndrug actiondrug candidatedrug discoverydrug efficacyfibrogenesisidiopathic pulmonary fibrosisimprovedin vitro Modelinnovationinterstitialmacrophagemonocytenovelnovel strategiesorgan on a chipphysiologic stressorpre-clinicalpreclinical developmentscreeningtargeted treatmenttherapeutic target
项目摘要
Idiopathic pulmonary fibrosis (IPF), characterized by the progressive stiffening of lung tissues, is a severe
disease with no cure. The understanding of the IPF pathogenesis is incomplete, but inflammation has been
identified as one of the major mediators and has been proposed as a therapeutic target for the development of
anti-IPF drugs. However, since existing in vitro fibrosis models are composed of limited cell types and utilize
rigid 2D culture formats, they cannot recapitulate the interaction between multiple profibrotic cells (macrophage,
myofibroblast) and the physiological stresses (shear flow, matrix stiffening, tissue contraction) in the fibrotic
tissue. As a result, these models are not able to provide the efficacy readout on the “therapeutic targets” of the
anti-fibrosis drugs. The objective of this renewal project is to develop a co-cultured fibrotic microtissue system
that can model the fibrogenesis event caused by the inflammation and predict the therapeutic efficacy of the
anti-fibrotic drugs that target inflammation pathways. Investigators have previously developed a static, mono-
cultured fibrotic microtissue system that can recapitulate the late-stage fibrogenic changes in tissue
biomechanics and histology caused by myofibroblast differentiation. However, this system is limited in
predicting the efficacy of drugs that target important early stage fibrogenesis events. In the current project,
investigators propose to expand the fibrosis modeling capacity of the existing system by including early-stage
fibrogenesis events, such as flow-mediated profibrotic activation of the macrophages and inflammation induced
myofibroblast differentiation. With this improved modeling capability, the new system will allow the examination
of the drug efficacy on the inflammatory pathways, thus validating the mechanism of action of the drug on the
intended target. The aims will include to develop a co-cultured fibrotic microtissue system that can model
inflammation-induced fibrogenesis of the lung interstitial tissue and to evaluate the screening capacity of the
microtissue system for anti-fibrosis drugs that target the inflammatory pathway. It is expected that such a
system will be able to simulate the therapeutic effects of the drug candidates on inflammatory pathways, thus
allowing the delineation of the therapeutic mechanism of the drug. Such a new approach can significantly
expedite the translation of anti-fibrotic therapies from the laboratories to the clinics.
1
特发性肺纤维化(IPF)是一种严重的疾病,其特征是肺组织进行性硬化。
对 IPF 发病机制的了解尚不完整,但炎症已经得到了证实。
被确定为主要介质之一,并已被提议作为开发的治疗靶点
然而,由于现有的体外纤维化模型由有限的细胞类型组成并且利用
由于严格的 2D 培养格式,它们无法概括多个促纤维化细胞(巨噬细胞、
肌成纤维细胞)和纤维化过程中的生理应力(剪切流、基质硬化、组织收缩)
因此,这些模型无法提供“治疗目标”的功效读数。
该更新项目的目标是开发共培养的纤维化微组织系统。
可以模拟炎症引起的纤维发生事件并预测治疗效果
研究人员之前开发了一种针对炎症途径的抗纤维化药物。
培养的纤维化微组织系统,可以重现组织的晚期纤维化变化
然而,该系统在肌成纤维细胞分化引起的生物力学和组织学方面受到限制。
预测针对重要早期纤维发生事件的药物的功效。
研究人员建议通过纳入早期阶段来扩展现有系统的纤维化建模能力
纤维发生事件,例如巨噬细胞的流介导的促纤维化激活和诱导的炎症
凭借这种改进的建模能力,新系统将允许进行检查。
从而验证药物对炎症通路的作用机制
目标将包括开发一种可以建模的共培养纤维化微组织系统。
炎症诱导的肺间质组织纤维化并评估筛选能力
预计这种针对炎症途径的抗纤维化药物的微组织系统。
系统将能够模拟候选药物对炎症途径的治疗作用,从而
这种新方法可以显着描述药物的治疗机制。
加快抗纤维化疗法从实验室到临床的转化。
1
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
WEE1 Dependency and Pejorative Prognostic Value in Triple-Negative Breast Cancer.
- DOI:10.1002/advs.202101030
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:de Nonneville A;Finetti P;Birnbaum D;Mamessier E;Bertucci F
- 通讯作者:Bertucci F
Modeling Mechanical Activation of Macrophages During Pulmonary Fibrogenesis for Targeted Anti-Fibrosis Therapy.
模拟肺纤维化过程中巨噬细胞的机械激活,用于靶向抗纤维化治疗。
- DOI:10.1101/2023.07.19.549794
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Xu,Ying;Ying,Linxuan;Lang,JenniferK;Hinz,Boris;Zhao,Ruogang
- 通讯作者:Zhao,Ruogang
Engineered microenvironment for the study of myofibroblast mechanobiology.
- DOI:10.1111/wrr.12955
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Xu Y;Koya R;Ask K;Zhao R
- 通讯作者:Zhao R
Compressive Buckling Fabrication of 3D Cell-Laden Microstructures.
- DOI:10.1002/advs.202101027
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Chen Z;Anandakrishnan N;Xu Y;Zhao R
- 通讯作者:Zhao R
Tobacco and Menthol flavored electronic cigarettes induced inflammation and dysregulated repair in lung fibroblast and epithelium.
烟草和薄荷味电子烟会引起肺成纤维细胞和上皮细胞的炎症和修复失调。
- DOI:10.21203/rs.3.rs-3037297/v1
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wang,Qixin;Lucas,JosephH;Pang,Cortney;Zhao,Ruogang;Rahman,Irfan
- 通讯作者:Rahman,Irfan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruogang Zhao其他文献
Ruogang Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruogang Zhao', 18)}}的其他基金
Modeling pulmonary fibrosis progression caused by differential mechanical stretch
模拟差异机械拉伸引起的肺纤维化进展
- 批准号:
10677845 - 财政年份:2022
- 资助金额:
$ 45.24万 - 项目类别:
An inflammation-induced fibrosis-on-chip system for the testing of anti-fibrosis drugs
用于测试抗纤维化药物的炎症诱导纤维化芯片系统
- 批准号:
10054573 - 财政年份:2020
- 资助金额:
$ 45.24万 - 项目类别:
Fibrotic microtissue chips for screening of anti-fibrotic therapies
用于筛选抗纤维化疗法的纤维化微组织芯片
- 批准号:
9121552 - 财政年份:2015
- 资助金额:
$ 45.24万 - 项目类别:
Fibrotic microtissue chips for screening of anti-fibrotic therapies
用于筛选抗纤维化疗法的纤维化微组织芯片
- 批准号:
9270551 - 财政年份:2015
- 资助金额:
$ 45.24万 - 项目类别:
Fibrotic microtissue chips for screening of anti-fibrotic therapies
用于筛选抗纤维化疗法的纤维化微组织芯片
- 批准号:
8964276 - 财政年份:2015
- 资助金额:
$ 45.24万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Enteric Glia as a Possible Target for Symptom Relief in Endometriosis
肠胶质细胞作为缓解子宫内膜异位症症状的可能目标
- 批准号:
10625609 - 财政年份:2023
- 资助金额:
$ 45.24万 - 项目类别:
Injury of blood brain and alveolar-endothelial barriers caused by alcohol and electronic cigarettes via purinergic receptor signaling
酒精和电子烟通过嘌呤受体信号传导引起血脑和肺泡内皮屏障损伤
- 批准号:
10638221 - 财政年份:2023
- 资助金额:
$ 45.24万 - 项目类别:
Elucidating the role of Myosin 5b in intestinal inflammation
阐明肌球蛋白 5b 在肠道炎症中的作用
- 批准号:
10883872 - 财政年份:2023
- 资助金额:
$ 45.24万 - 项目类别:
Biodegradable Elastomers and Resorbable Synthetic Vascular Grafts
可生物降解的弹性体和可吸收的合成血管移植物
- 批准号:
10580321 - 财政年份:2023
- 资助金额:
$ 45.24万 - 项目类别: