Advanced wireless optogenetics and photometry system for neuroscience research
用于神经科学研究的先进无线光遗传学和光度测量系统
基本信息
- 批准号:10240473
- 负责人:
- 金额:$ 99.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAnimal BehaviorAnimal ModelAnimalsAreaAttentionBRAIN initiativeBehaviorBehavioralBiological AssayBiologyBrainCannulasCommunitiesComplexComputer softwareCountryDetectionDevelopmentDevice DesignsDevicesDisadvantagedElectronicsEngineeringEnvironmentFeedbackFiber OpticsFluorescenceFrequenciesFunding MechanismsGoalsHarvestImplantLaboratoriesLeadLightLightingMeasurementMeasuresMechanicsMetalsMicrofluidicsMissionModelingModernizationMonitorMotionNeuronsNeurosciencesNeurosciences ResearchOpticsOutputPeripheral Nervous SystemPharmacologyPharmacology StudyPhasePhotometryPhysiologic pulsePriceProgram DevelopmentPumpQuality ControlResearch PersonnelResearch SupportRunningSchemeSmall Business Innovation Research GrantSmall Business Technology Transfer ResearchSocial InteractionSourceSystemTalentsTechniquesTechnologyTestingTimeTissuesWireless TechnologyWorkbasebrain researchcostdesigndigitalengineering designexperimental studyfield studyfluorescence imagingfree behaviorimplantable deviceimprovedin vivoinnovationirritationmillisecondminiaturizeneural circuitoperationoptogeneticspreventprogramsradio frequencyrelating to nervous systemresearch studyresponsesocial groupsocial movementsoftware systemssuccesstool
项目摘要
Project Summary/Abstract
Neuroscience research over the last decade has been revolutionized by many technological advancements.
Optogenetics and fluorescence imaging represent two distinct, and sometimes complementary tools used in
neuroscience research to study the central and peripheral nervous systems in the context of the BRAIN initiative.
Advanced interrogations of underlying neural circuits and biology are often frustrated, however, by technological
limitations that prevent the use of these approaches to study natural behaviors of untethered, freely moving
animals. Traditional fiber-optic cable for optogenetics and bulky metal cannulas connected with external
mechanical pumps for pharmacology impart significant damage to fragile neural tissue, limit the natural behavior
of freely moving animals, affect social interactions and movements in complex, naturalistic 3D environment, and
lead to persistent irritation at the biotic/abiotic interface due to mechanical mismatch and micromotions. These
drawbacks, together with the costly setup, of current technologies motivate the development of innovative
engineering designs to improve fidelity, operational ease, versatility and range of advanced brain research
studies with live animal models.
Our work during Phase II developed capabilities to build our existing system-level hardware and software, as
well as scalable manufacturing scheme to fabricate our wireless, battery-free optogenetics devices. Through
these efforts, NeuroLux has already achieved substantial success in disseminating tools for neuroscience
research, increasing user base to 80 laboratories in 11 countries in the last three years. The proposed work for
Phase IIB focuses on further propelling our initial success by refining critical aspects of our hardware, as well as
expanding our capabilities to include fully implantable, wireless, battery-free fluorescence imaging to monitor
neural activity in real time, in a manner that leverages our current hardware and software. Specifically, the
proposed work will (1) develop hardware for multi-enclosure operation with advanced features, (2) advance long-
range optogenetic stimulators with active, programmable control over illumination intensity, and (3) develop
optoelectronic photometers with options with integrated optogenetic stimulation capabilities.
项目摘要/摘要
在过去十年中,神经科学研究已被许多技术进步彻底改变。
光遗传学和荧光成像代表了两个不同的,有时是互补工具
神经科学研究在大脑倡议的背景下研究中央和周围神经系统。
但是,通过技术,通常会对潜在的神经回路和生物学进行先进的询问
阻止使用这些方法来研究不受限制,自由移动的自然行为的局限性
动物。传统的光纤电缆,用于光遗传学和与外部相连的笨重的金属插管
药理学的机械泵对脆弱的神经组织造成重大损害,限制自然行为
自由移动的动物,影响复杂,自然主义3D环境中的社会互动和运动,以及
由于机械不匹配和微功能,导致生物/非生物界面的持续刺激。这些
当前技术的缺点,以及昂贵的设置,激发了创新的发展
工程设计,以提高忠诚度,运营便利性,多功能性和高级大脑研究的范围
使用活动物模型的研究。
我们在第二阶段的工作开发了构建我们现有系统级硬件和软件的功能,
以及可扩展的制造方案,以制造我们的无线无线光遗传学设备。通过
这些努力,Neurolux在传播神经科学工具方面已经取得了巨大成功
研究,在过去三年中,将用户群增加到11个国家的80个实验室。拟议的工作
IIB阶段致力于通过完善硬件的关键方面以及
扩展我们的功能,包括完全植入,无线,无电池荧光成像以监视
实时神经活动,以利用我们当前的硬件和软件的方式。具体来说,
拟议的工作将(1)开发用于具有高级功能的多重操作的硬件,(2)长期提前
具有主动,可编程控制照明强度的范围光遗传刺激器,(3)发展
具有集成光遗传刺激能力的选件的光电子光度计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roozbeh Ghaffari其他文献
Roozbeh Ghaffari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roozbeh Ghaffari', 18)}}的其他基金
Low Cost, Fully Implantable Wireless Neural Recording Device
低成本、完全植入式无线神经记录设备
- 批准号:
10255016 - 财政年份:2021
- 资助金额:
$ 99.54万 - 项目类别:
Low Cost, Fully Implantable Wireless Neural Recording Device
低成本、完全植入式无线神经记录设备
- 批准号:
10407657 - 财政年份:2021
- 资助金额:
$ 99.54万 - 项目类别:
Wireless, implantable optofluidic systems for programmed pharmacology and optogenetics
用于程序药理学和光遗传学的无线、植入式光流控系统
- 批准号:
9924689 - 财政年份:2017
- 资助金额:
$ 99.54万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 99.54万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 99.54万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 99.54万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 99.54万 - 项目类别: