Predictive models of brain dynamics during decision making and their validation using distributed optogenetic stimulation
决策过程中大脑动力学的预测模型及其使用分布式光遗传学刺激的验证
基本信息
- 批准号:10240643
- 负责人:
- 金额:$ 66.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-25 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAreaAttentionBRAIN initiativeBehaviorBehavioralBiologicalBiophysicsBrainChoice BehaviorCollaborationsComputer ModelsDataData AnalysesDecision MakingDevelopmentEtiologyEye MovementsFeedbackGoalsIndividualInterventionLinkLocationMeasuresMediatingMental ProcessesMethodologyMethodsModelingMonitorMovementNeuronsNon-linear ModelsNonlinear DynamicsOutputParietalParietal LobePatternPerformancePhasePhysiologic pulsePlayPopulationPrimatesProcessPropertyReportingResolutionRoleSensorySiteSpace ModelsStimulusSystemTechniquesTestingTimeTrainingUnited States National Institutes of HealthValidationVisual FieldsWorkbasebehavioral responsecomputer frameworkexperienceexperimental groupexperimental studyflexibilityfrontal lobeimprovedloss of functionmillisecondmulti-scale modelingneural circuitneural patterningneuroregulationnonhuman primateoculomotoroptogeneticsoutcome predictionparietal-frontal circuitspredictive modelingrelating to nervous systemresponsesensory inputstemtheoriestool
项目摘要
Project Summary
During behavior, the oculomotor system is tasked with selecting objects from an ever-changing visual field and
guiding eye movements to these locations. The attentional priority given to sensory targets during selection
can be strongly influenced by external stimulus properties (“bottom-up”) or internal goals based on previous
experience (“top-down”). Although these exogenous and endogenous drivers of selection are known to operate
across partially overlapping time scales, how neural circuits mechanistically support top-down and bottom-up
processing has been difficult to disentangle. This is because the neural circuits for spatial attention and
selection are distributed across the frontal and parietal cortices and operate across multiple spatial scales
spanning the activity of individual neurons and neuronal populations. In this Targeted Brain Circuit R01 Project
proposal, an experimental group (Pesaran/NYU) and a theory group (Shanechi/USC) will use cutting-edge
techniques developed under the NIH BRAIN Initiative support to validate predictive models of neuronal
dynamics and test hypotheses about how frontal-parietal cortices perform attentional selection. A behavioral
task that dissociates bottom up and top-down processing will let us define bottom-up and top-down target
states. We will then build predictive models of neuronal dynamics within and between frontal and parietal
cortex and empirically validate the models by stimulating neural activity to achieve the desired neural state.
Aim 1 validates predictive models of local circuit dynamics. We will stimulate within PFC to achieve target
states in PFC. Aim 2 validates predictive models of long-range circuit dynamics. We will stimulate sites in
PPC that functionally connect to PFC in order to achieve target states in PFC. Aim 3 validates predictive
models of distributed circuit dynamics. We will simultaneously stimulate both PFC and PPC to achieve the
target states. In each case, successfully directing activity toward the target state will indicate the model is valid.
If the target state reflects a causal role in attention, as opposed to correlating with attentional processes, we
predict that behavioral choices will be biased. This proposal tackles several of the major topic areas of the
BRAIN 2025 report. We will identify fundamental principles about circuit dynamics and functional connectivity
for understanding the biological basis of mental processes through development of new theoretical and data
analysis tools (Topic 5). We will produce a dynamic picture of the functioning brain by developing and applying
improved methods for large-scale monitoring of neural activity (Topic 3). We will demonstrate causality by
linking brain activity to behavior with precise interventional tools that change neural circuit dynamics (Topic 4).
Recent years have seen dramatic advances in our ability to experimentally interface with the primate brain with
increasing precision scale. A fruitful interplay between multiscale experiments and predictive modeling that we
propose will let us test hypotheses about how flexible behaviors are controlled by large-scale neural circuits.
项目摘要
在行为期间,动眼系统的任务是从不断变化的视野和
引导眼睛移动到这些位置。选择期间给予感觉目标的注意力优先级
可能会受到外部刺激特性(“自下而上”)或基于以前的内部目标的强烈影响
经验(“自上而下”)。尽管已知这些外源和内源性驱动因素可以运行
在部分重叠的时间尺度上,神经回路如何机械地支持自上而下和自下而上
处理很难解开。这是因为用于空间注意的神经回路和
选择分布在额叶和顶叶皮层上,并在多个空间尺度上运行
跨越单个神经元和神经元种群的活性。在这个目标的大脑电路R01项目中
提案,实验组(Pesaran/NYU)和理论组(Shanechi/USC)将使用尖端
在NIH脑倡议支持下开发的技术以验证神经元的预测模型
动力学和测试假设关于额叶皮层如何进行注意力选择。行为
解散自下而上的任务和自上而下的处理将使我们定义自下而上的目标和自上而下的目标
国家。然后,我们将建立额叶和顶叶之间和之间神经元动力学的预测模型
皮质和经验通过刺激神经活性以达到所需的神经元状态来验证模型。
AIM 1验证了本地电路动力学的预测模型。我们将在PFC内刺激以实现目标
PFC中的状态。 AIM 2验证了远程电路动力学的预测模型。我们将刺激站点
PPC在功能上连接到PFC以实现PFC中的目标状态。 AIM 3验证预测性
分布式电路动力学的模型。我们将简单地刺激PFC和PPC以实现
目标状态。在每种情况下,成功将活动指向目标状态都将表明该模型有效。
如果目标状态反映了关注中的因果作用,而不是与注意过程相关,那么我们
预测行为选择将是偏差的。该提议解决了该提议的几个主要主题领域
大脑2025报告。我们将确定有关电路动态和功能连接性的基本原则
通过开发新的理论和数据来理解心理过程的生物学基础
分析工具(主题5)。我们将通过开发和应用来产生功能大脑的动态图片
改进了对神经活动大规模监测的方法(主题3)。我们将通过
将大脑活动与行为联系起来与更改神经电路动态的精确介入工具(主题4)。
近年来,我们与灵长类动物大脑与灵长类动物大脑进行实验的能力取得了巨大进步
提高精度量表。多尺度实验和我们的预测建模之间的富有成果的相互作用
提案将使我们可以测试有关如何通过大规模神经回路控制柔性行为的假设。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiscale low-dimensional motor cortical state dynamics predict naturalistic reach-and-grasp behavior.
- DOI:10.1038/s41467-020-20197-x
- 发表时间:2021-01-27
- 期刊:
- 影响因子:16.6
- 作者:Abbaspourazad H;Choudhury M;Wong YT;Pesaran B;Shanechi MM
- 通讯作者:Shanechi MM
Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation.
- DOI:10.1038/s41593-018-0171-8
- 发表时间:2018-07
- 期刊:
- 影响因子:25
- 作者:Pesaran B;Vinck M;Einevoll GT;Sirota A;Fries P;Siegel M;Truccolo W;Schroeder CE;Srinivasan R
- 通讯作者:Srinivasan R
Multiregional communication and the channel modulation hypothesis.
- DOI:10.1016/j.conb.2020.11.016
- 发表时间:2021-03
- 期刊:
- 影响因子:5.7
- 作者:Pesaran B;Hagan M;Qiao S;Shewcraft R
- 通讯作者:Shewcraft R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roozbeh Kiani其他文献
Roozbeh Kiani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roozbeh Kiani', 18)}}的其他基金
Causal power of cortical neural ensembles: mechanisms and utility for brain perturbations
皮质神经元的因果力:大脑扰动的机制和效用
- 批准号:
10454002 - 财政年份:2022
- 资助金额:
$ 66.72万 - 项目类别:
Causal power of cortical neural ensembles: mechanisms and utility for brain perturbations
皮质神经元的因果力:大脑扰动的机制和效用
- 批准号:
10590631 - 财政年份:2022
- 资助金额:
$ 66.72万 - 项目类别:
CRCNS: Neural coding and computation in large ensembles in prefrontal cortex
CRCNS:前额皮质大型集合中的神经编码和计算
- 批准号:
9487337 - 财政年份:2015
- 资助金额:
$ 66.72万 - 项目类别:
相似国自然基金
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
- 批准号:62301532
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 66.72万 - 项目类别:
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 66.72万 - 项目类别:
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
- 批准号:
10760409 - 财政年份:2023
- 资助金额:
$ 66.72万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 66.72万 - 项目类别: