Dynamics of and Function Cerebellar Microglia
小脑小胶质细胞的动力学和功能
基本信息
- 批准号:10267692
- 负责人:
- 金额:$ 4.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2023-08-30
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAdrenergic ReceptorAdultAffectAreaBehaviorBehavioralBiological AssayBrainBrain regionCell membraneCellsCerebellumCerebral cortexConsensusCorpus striatum structureDefectDevelopmental ProcessDiseaseElectron MicroscopyElectrophysiology (science)ElementsEpigenetic ProcessExcitatory Postsynaptic PotentialsExhibitsFellowshipGenetic TranscriptionGoalsHealthHeterogeneityHippocampus (Brain)ImmuneInflammatoryInjuryKnowledgeLearningLightMediatingMemoryMental disordersMicrogliaMolecularMorphologyNeuraxisNeuronal PlasticityNeuronsNorepinephrinePathologicPathway interactionsPhagocytesPharmacologyPhysiologicalPhysiologyPlayPopulationPopulation HeterogeneityProcessPropertyPurinoceptorPurkinje CellsReceptor SignalingReflex actionRoleSensoryShapesSignal PathwaySignal TransductionSliceStimulusSurveysSynapsesSynaptic plasticityTestingTrainingWorkbrain parenchymacell motilityexperienceexperimental studygenetic manipulationinsightnervous system disorderneuronal cell bodyrelating to nervous systemresponseresponse to injury
项目摘要
Abstract: Synaptic plasticity allows the central nervous system (CNS) to incorporate new sensory experiences
and information, and its disruption is associated with many neurological and psychiatric disorders. Much recent
work has focused on the contribution of non-neuronal CNS cells, especially microglia, the innate immune cells
of the CNS, to synaptic plasticity. Though classically thought of in their immune capacities, microglia are vital to
many homeostatic and developmental processes, including synaptic plasticity of nascent and adult neuronal
networks. Despite the emerging consensus that microglial dynamics are critical to brain function during
physiological as well as pathological conditions, it is unclear whether these microglial roles and their underlying
mechanisms are universal or differ between brain regions. There is a growing body evidence to suggest microglia
exhibit a high degree of regional specialization; existing on a continuum from homeostatic (cortex, striatum) to
immune vigilant (cerebellum) even in the absence of pathological stimuli. Indeed, microglia in the cerebellum
represent a distinct population, exhibiting unique transcriptional and epigenetic profiles, along with distinct
functional properties, such as being more phagocytic, morphologically less ramified and less densely distributed.
As a consequence, cerebellar microglia survey less of the brain parenchyma than cortical microglia, but
compensate for this by undergoing frequent somatic translocations under homeostatic conditions, a
phenomenon not observed in cortex. Despite these differences, cerebellar microglia maintain common microglial
functions, exhibiting a robust injury response and dynamic interactions with surrounding neural elements.
Understanding the common and unique roles of cerebellar microglia, along with the mechanisms that mediate
such roles, will be critical to understanding both cerebellar function and plasticity, as well as the heterogeneity
of microglia throughout the brain. In this proposal, I will address the hypothesis that cerebellar microglia use a
subset of the conserved mechanisms that modulate microglial dynamics to directly interact with the cerebellar
microcircuit to modulate cerebellar neuronal plasticity.
To test this hypothesis I have developed the following specific aims: In Aim 1 I will investigate how two
important mechanisms that are known to be key to microglial mediated neural plasticity in the cortex shape the
dynamics and injury response of cerebellar microglia. In Aim 2 I will investigate the importance of one of these
mechanisms, b2 adrenergic receptor signaling, with known roles in cerebellar plasticity, to microglial modulation
of cerebellar circuits and behavior. The results obtained from these complementary but independent aims will
further our understanding of cerebellar microglia, illuminating both the signaling pathways that govern their
dynamics and their contribution to cerebellar neuronal plasticity. From there, we can begin to unravel how
different microglial populations serve their roles in the brain and gain insight into how defects in microglia-
mediated synaptic plasticity contribute to neurological and psychiatric diseases.
摘要:突触可塑性使中枢神经系统(CNS)能够融入新的感觉体验
和信息,其破坏与许多神经和精神疾病有关。最近的
工作重点是非神经元中枢神经系统细胞的贡献,特别是小胶质细胞,先天免疫细胞
中枢神经系统,突触可塑性。尽管传统上认为小胶质细胞具有免疫能力,但它对于免疫功能至关重要
许多稳态和发育过程,包括新生和成年神经元的突触可塑性
网络。尽管人们逐渐达成共识,认为小胶质细胞动力学对大脑功能至关重要
生理和病理条件下,目前尚不清楚这些小胶质细胞的作用及其潜在的作用是否
机制是通用的或在大脑区域之间有所不同。越来越多的身体证据表明小胶质细胞
表现出高度的区域专业化;存在于从稳态(皮层、纹状体)到
即使在没有病理刺激的情况下,免疫警惕(小脑)。事实上,小脑中的小胶质细胞
代表一个独特的群体,表现出独特的转录和表观遗传特征,以及独特的
功能特性,例如更具吞噬性、形态上分支较少且分布较不密集。
因此,小脑小胶质细胞对脑实质的调查少于皮质小胶质细胞,但
通过在稳态条件下进行频繁的体细胞易位来补偿这一点,
在皮层中未观察到的现象。尽管存在这些差异,小脑小胶质细胞仍保持共同的小胶质细胞
功能,表现出强大的损伤反应以及与周围神经元件的动态相互作用。
了解小脑小胶质细胞的常见和独特作用以及介导机制
这些角色对于理解小脑功能和可塑性以及异质性至关重要
整个大脑的小胶质细胞。在本提案中,我将提出以下假设:小脑小胶质细胞使用
调节小胶质细胞动力学以直接与小脑相互作用的保守机制的子集
调节小脑神经元可塑性的微电路。
为了检验这个假设,我制定了以下具体目标: 在目标 1 中,我将研究两个
已知对皮层小胶质细胞介导的神经可塑性至关重要的重要机制塑造了
小脑小胶质细胞的动力学和损伤反应。在目标 2 中,我将研究其中一项的重要性
机制,b2 肾上腺素受体信号转导,在小脑可塑性中具有已知的作用,对小胶质细胞的调节
小脑回路和行为。从这些互补但独立的目标中获得的结果将
进一步我们对小脑小胶质细胞的理解,阐明了控制其的信号通路
动力学及其对小脑神经元可塑性的贡献。从那里,我们可以开始解开如何
不同的小胶质细胞群在大脑中发挥各自的作用,并深入了解小胶质细胞的缺陷如何
介导的突触可塑性有助于神经和精神疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Blohm Stoessel其他文献
Mark Blohm Stoessel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Blohm Stoessel', 18)}}的其他基金
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Cardiac Neuromodulation: Mechanisms and Therapeutics
心脏神经调节:机制和治疗
- 批准号:
10627573 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 4.6万 - 项目类别:
Depleting Somatostatinergic Neurons Recapitulates Diabetic Phenotypes In Brain and Adipose Tissue
消耗生长抑素能神经元重现大脑和脂肪组织中的糖尿病表型
- 批准号:
10536358 - 财政年份:2022
- 资助金额:
$ 4.6万 - 项目类别:
Depleting Somatostatinergic Neurons Recapitulates Diabetic Phenotypes In Brain and Adipose Tissue
消耗生长抑素能神经元重现大脑和脂肪组织中的糖尿病表型
- 批准号:
10647698 - 财政年份:2022
- 资助金额:
$ 4.6万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 4.6万 - 项目类别: