Dynamics of and Function Cerebellar Microglia

小脑小胶质细胞的动力学和功能

基本信息

  • 批准号:
    10267692
  • 负责人:
  • 金额:
    $ 4.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-30 至 2023-08-30
  • 项目状态:
    已结题

项目摘要

Abstract: Synaptic plasticity allows the central nervous system (CNS) to incorporate new sensory experiences and information, and its disruption is associated with many neurological and psychiatric disorders. Much recent work has focused on the contribution of non-neuronal CNS cells, especially microglia, the innate immune cells of the CNS, to synaptic plasticity. Though classically thought of in their immune capacities, microglia are vital to many homeostatic and developmental processes, including synaptic plasticity of nascent and adult neuronal networks. Despite the emerging consensus that microglial dynamics are critical to brain function during physiological as well as pathological conditions, it is unclear whether these microglial roles and their underlying mechanisms are universal or differ between brain regions. There is a growing body evidence to suggest microglia exhibit a high degree of regional specialization; existing on a continuum from homeostatic (cortex, striatum) to immune vigilant (cerebellum) even in the absence of pathological stimuli. Indeed, microglia in the cerebellum represent a distinct population, exhibiting unique transcriptional and epigenetic profiles, along with distinct functional properties, such as being more phagocytic, morphologically less ramified and less densely distributed. As a consequence, cerebellar microglia survey less of the brain parenchyma than cortical microglia, but compensate for this by undergoing frequent somatic translocations under homeostatic conditions, a phenomenon not observed in cortex. Despite these differences, cerebellar microglia maintain common microglial functions, exhibiting a robust injury response and dynamic interactions with surrounding neural elements. Understanding the common and unique roles of cerebellar microglia, along with the mechanisms that mediate such roles, will be critical to understanding both cerebellar function and plasticity, as well as the heterogeneity of microglia throughout the brain. In this proposal, I will address the hypothesis that cerebellar microglia use a subset of the conserved mechanisms that modulate microglial dynamics to directly interact with the cerebellar microcircuit to modulate cerebellar neuronal plasticity. To test this hypothesis I have developed the following specific aims: In Aim 1 I will investigate how two important mechanisms that are known to be key to microglial mediated neural plasticity in the cortex shape the dynamics and injury response of cerebellar microglia. In Aim 2 I will investigate the importance of one of these mechanisms, b2 adrenergic receptor signaling, with known roles in cerebellar plasticity, to microglial modulation of cerebellar circuits and behavior. The results obtained from these complementary but independent aims will further our understanding of cerebellar microglia, illuminating both the signaling pathways that govern their dynamics and their contribution to cerebellar neuronal plasticity. From there, we can begin to unravel how different microglial populations serve their roles in the brain and gain insight into how defects in microglia- mediated synaptic plasticity contribute to neurological and psychiatric diseases.
摘要:突触可塑性允许中枢神经系统(CNS)结合新的感官体验 和信息及其破坏与许多神经系统和精神疾病有关。最近很多 工作重点是非神经中枢神经系统细胞的贡献,尤其是小胶质细胞,先天免疫细胞 中枢神经系统的突触可塑性。尽管经典地考虑了其免疫能力,但小胶质细胞对于 许多稳态和发育过程,包括新生和成人神经元的突触可塑性 网络。尽管有新兴的共识,即小胶质细胞动力学对大脑功能至关重要 生理和病理状况,尚不清楚这些小胶质角色及其潜在的作用是否 机制是普遍的或大脑区域之间的差异。越来越多的身体证据表明小胶质细胞 表现出高度的区域专业化;存在于从体内平衡(皮层,纹状体)到的连续体上 即使没有病理刺激,免疫警惕性(小脑)也是如此。确实,小脑中的小胶质细胞 代表一个独特的人群,表现出独特的转录和表观遗传曲线,以及独特的 功能特性,例如更吞噬,形态学上的较少且分布较少。 结果,小脑小胶质细胞对脑实质的调查少于皮质小胶质细胞,但 通过在稳态条件下经常进行体细胞易位来弥补这一点 在皮质中未观察到现象。尽管存在这些差异,小脑小胶质细胞保持常见的小胶质细胞 功能,表现出强大的损伤反应和与周围神经元素的动态相互作用。 了解小脑小胶质细胞的常见和独特作用,以及介导的机制 这种角色对于理解小脑功能和可塑性以及异质性至关重要 整个大脑的小胶质细胞。在此提案中,我将解决小脑小胶质细胞使用的假设 保守机制的子集调节小胶质细胞动力学直接与小脑相互作用 微电路调节小脑神经元可塑性。 为了检验这一假设,我已经开发了以下特定目的:在目标1中,我将研究两个 已知的重要机制是皮层中小胶质细胞介导的神经可塑性的关键 小脑小胶质细胞的动力和损伤反应。在AIM 2中,我将研究其中之一的重要性 机制,B2肾上腺素能受体信号传导,在小脑可塑性中具有已知作用,可针对小胶质调制 小脑电路和行为。从这些互补但独立目标获得的结果将 进一步,我们对小脑小胶质细胞的理解,阐明了两种控制它们的信号传导途径 动力学及其对小脑神经元可塑性的贡献。从那里,我们可以开始解开如何 不同的小胶质细胞在大脑中发挥作用,并深入了解小胶质细胞中的缺陷如何 介导的突触可塑性有助于神经系统和精神病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Blohm Stoessel其他文献

Mark Blohm Stoessel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Blohm Stoessel', 18)}}的其他基金

Dynamics of and Function Cerebellar Microglia
小脑小胶质细胞的动力学和功能
  • 批准号:
    10472705
  • 财政年份:
    2020
  • 资助金额:
    $ 4.6万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Cardiac Neuromodulation: Mechanisms and Therapeutics
心脏神经调节:机制和治疗
  • 批准号:
    10627573
  • 财政年份:
    2023
  • 资助金额:
    $ 4.6万
  • 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
  • 批准号:
    10590611
  • 财政年份:
    2022
  • 资助金额:
    $ 4.6万
  • 项目类别:
Depleting Somatostatinergic Neurons Recapitulates Diabetic Phenotypes In Brain and Adipose Tissue
消耗生长抑素能神经元重现大脑和脂肪组织中的糖尿病表型
  • 批准号:
    10536358
  • 财政年份:
    2022
  • 资助金额:
    $ 4.6万
  • 项目类别:
Depleting Somatostatinergic Neurons Recapitulates Diabetic Phenotypes In Brain and Adipose Tissue
消耗生长抑素能神经元重现大脑和脂肪组织中的糖尿病表型
  • 批准号:
    10647698
  • 财政年份:
    2022
  • 资助金额:
    $ 4.6万
  • 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
  • 批准号:
    10706006
  • 财政年份:
    2022
  • 资助金额:
    $ 4.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了