Building protein structure models for intermediate resolution cryo-electron microscopy maps
建立中等分辨率冷冻电子显微镜图的蛋白质结构模型
基本信息
- 批准号:10266083
- 负责人:
- 金额:$ 30.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-20 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAmino AcidsAreaBiologicalCellsChimera organismCodeCommunicationCommunitiesComplementComputer softwareComputing MethodologiesCryoelectron MicroscopyDNADataDevelopmentDiseaseElectron MicroscopyGoalsGrainHumanInterventionInvestigationKnowledgeLigandsMapsMethodologyMethodsModelingMolecularMolecular ConformationMultiprotein ComplexesNaturePositioning AttributePreparationProtein RegionProteinsPublishingRNAResearchResearch PersonnelResolutionSamplingSideSource CodeStructural ModelsStructureTechniquesThree-Dimensional ImageThree-dimensional analysisVisualization softwareX-Ray Crystallographybasecomputerized toolsdata acquisitiondeep learningdensitydetection methodgraphical user interfaceimage processingimprovedmachine learning methodmacromolecular assemblymacromoleculemodel buildingnovelprogramsprotein functionprotein structureprotein structure predictionrepositorysoftware developmentstructural biologythree dimensional structuretool
项目摘要
Project Summary
Cryo-electron microscopy (cryo-EM) is an emerging technique in structural biology, which is capable of
determining three-dimensional (3D) structures of biological macromolecules. Compared to conventional
structural biology techniques, such as X-ray crystallography and NMR, a major advantage of cryo-EM is its
ability to solve large macromolecular assemblies. Moreover, recent technical breakthroughs in cryo-EM have
enabled determination of 3D structures at nearly atomic-level resolutions. Cryo-EM will undoubtedly become a
method of central importance in structural biology in the next decade. With the rapid accumulation of cryo-EM
structure data, it has become crucial to develop computational methods that can effectively build and extract
3D structures of biological macromolecules from EM maps. The goal of this project is to develop computational
methods for modeling both global and local structures and for interpreting 3D structures embedded in EM
maps of around 4 Å to medium-resolution. Recently, we have developed a new de novo protein structure
modeling method, MAINMAST, which can model protein structures from an EM density map without using
existing template or fragment structures on the map. Based on the successful development of MAINMAST, we
further extend the capability of MAINMAST toward more accurate modeling and for multiple-chain modeling. In
addition, we will also develop novel modeling methods for medium-resolution EM maps, which combine a
coarse-grained protein structure modeling technique, methods in protein structure prediction, and a low-
resolution image processing approach with deep learning, a state-of-the-art powerful machine learning method.
The proposed project capitalizes on the tremendous efforts and progress made in structural determination with
cryo-EM by developing computational tools that allow researchers to perform efficient and reliable structure
analyses for 3D EM density maps. The project will greatly facilitate investigation into the molecular
mechanisms of macromolecule function by providing an efficient means of 3D structure modeling.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daisuke Kihara其他文献
Daisuke Kihara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daisuke Kihara', 18)}}的其他基金
Building protein structure models for intermediate resolution cryo-electron microscopy maps
建立中等分辨率冷冻电子显微镜图的蛋白质结构模型
- 批准号:
10405197 - 财政年份:2020
- 资助金额:
$ 30.55万 - 项目类别:
Building protein structure models for intermediate resolution cryo-electron microscopy maps
建立中等分辨率冷冻电子显微镜图的蛋白质结构模型
- 批准号:
10794660 - 财政年份:2020
- 资助金额:
$ 30.55万 - 项目类别:
Building protein structure models for intermediate resolution cryo-electron microscopy maps
建立中等分辨率冷冻电子显微镜图的蛋白质结构模型
- 批准号:
10462711 - 财政年份:2020
- 资助金额:
$ 30.55万 - 项目类别:
Building protein structure models for intermediate resolution cryo-electron microscopy maps
建立中等分辨率冷冻电子显微镜图的蛋白质结构模型
- 批准号:
10670831 - 财政年份:2020
- 资助金额:
$ 30.55万 - 项目类别:
Identification of protein-metabolite interactome.
蛋白质-代谢物相互作用组的鉴定。
- 批准号:
8477213 - 财政年份:2011
- 资助金额:
$ 30.55万 - 项目类别:
Identification of protein-metabolite interactome.
蛋白质-代谢物相互作用组的鉴定。
- 批准号:
8324598 - 财政年份:2011
- 资助金额:
$ 30.55万 - 项目类别:
Identification of protein-metabolite interactome.
蛋白质-代谢物相互作用组的鉴定。
- 批准号:
8665991 - 财政年份:2011
- 资助金额:
$ 30.55万 - 项目类别:
Identification of protein-metabolite interactome.
蛋白质-代谢物相互作用组的鉴定。
- 批准号:
8086786 - 财政年份:2011
- 资助金额:
$ 30.55万 - 项目类别:
PROTEIN-PROTEIN DOCKING USING LOCAL SHAPE INVARIANTS
使用局部形状不变量进行蛋白质-蛋白质对接
- 批准号:
8171888 - 财政年份:2010
- 资助金额:
$ 30.55万 - 项目类别:
PROTEIN-PROTEIN DOCKING USING LOCAL SHAPE INVARIANTS
使用局部形状不变量进行蛋白质-蛋白质对接
- 批准号:
7956349 - 财政年份:2009
- 资助金额:
$ 30.55万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Integrative deep learning algorithms for understanding protein sequence-structure-function relationships: representation, prediction, and discovery
用于理解蛋白质序列-结构-功能关系的集成深度学习算法:表示、预测和发现
- 批准号:
10712082 - 财政年份:2023
- 资助金额:
$ 30.55万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10502084 - 财政年份:2022
- 资助金额:
$ 30.55万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10707418 - 财政年份:2022
- 资助金额:
$ 30.55万 - 项目类别:
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10544772 - 财政年份:2022
- 资助金额:
$ 30.55万 - 项目类别:
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10358980 - 财政年份:2022
- 资助金额:
$ 30.55万 - 项目类别: