Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual

评估和预测个体放射治疗反应的新工具

基本信息

  • 批准号:
    7730125
  • 负责人:
  • 金额:
    $ 32.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-05 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Gliomas are uniformly fatal primary brain tumors, the diagnosis of which has been greatly impacted by improvements in medical imaging techniques over the last several decades. However, a significant gap remains between the obvious goal of more effective therapy and the present understanding of the dynamics of the tumor's proliferation and invasion in humans in vivo. That gap pivots on the concept that treatment of gliomas fails because of the diffuse dispersal of glioma cells throughout the neural axis even before diagnosis: the spatial and temporal evolution of which has been shown to be of quantitative and clinical importance as well as predicable with our current modeling methodology. Further, every imaging technique has a threshold of detection leaving much of the dispersed tumor invisible on imaging. The long-term objectives of this proposal are to provide new tools designed to quantify and predict the net proliferation and dispersal of glioma cells accurately enough to quantify and predict response to radiation therapy that are validated by and compared against information obtained through routine medical imaging of individual patients. The specific aims are to investigate the use of a spatio-temporal bio-mathematical model as a metric for glioma concentration, dispersal, response to radiation therapy, and location of post-treatment recurrence of individual gliomas in living patients in sufficient time to impact clinical decision making. This involves a gross but necessary assumption that medical imaging such as T1-weighted, gadolinium enhanced, T2-weighted MRI and PET imaging techniques directly correlate with disease distribution and biology. As the primary clinical window into disease progression, imaging techniques are used as benchmarks and metrics against which accuracy and success of model predictions are measured. Methods involve modern techniques and tools including, co-registration of clinical imaging, 3D radiation dose- distribution maps and the 4D patient-specific, model-simulated movie of the spatio-temporal growth and dispersal of each glioma. Comparisons are made between the model predicted invasion and therapy response patterns and that observed on follow-up imaging and, ultimately, autopsy. PUBLIC HEALTH RELEVANCE: The relevance of this proposal to public health lies in its applicability to any individual patient (and to the composition of any proposed group of "similar" patients) who has a primary brain tumor (glioma) and is being treated or is being considered for radiation therapy. Since disease progression and response to therapy are largely gauged by changes in current imaging techniques, there is an inherent limit to the clinical observation of a glioma to a "tip of the iceberg" view. Tools to predict and assess the dispersal (invasion) of gliomas cells throughout the brain in addition to the response to therapy which we cannot view on imaging is essential to the development of new and effective therapies for this uniformly fatal tumor. Specifically, as radiation therapy is targeted towards the dispersed glioma cells, peripheral to the imaging abnormality, it is necessary to calculate beyond the limits of imaging and to design mathematical models to dynamically assess that component of the tumor as well as take advantage of the tumor's proliferation rate in real time and in real patients.
描述(由申请人提供): 神经胶质瘤都是致命的原发性脑肿瘤,过去几十年来医学成像技术的进步极大地影响了其诊断。然而,更有效治疗的明显目标与目前对人体体内肿瘤增殖和侵袭动力学的理解之间仍然存在显着差距。这一差距的关键在于这样一个概念:神经胶质瘤的治疗失败是因为神经胶质瘤细胞甚至在诊断之前就在整个神经轴中弥漫性分散:其空间和时间演变已被证明具有定量和临床重要性,并且可以通过我们的预测来预测。当前的建模方法。此外,每种成像技术都有一个检测阈值,使得大部分分散的肿瘤在成像中不可见。该提案的长期目标是提供新工具,旨在足够准确地量化和预测神经胶质瘤细胞的净增殖和扩散,以量化和预测对放射治疗的反应,并通过常规医学成像获得的信息进行验证和比较。个别患者。具体目标是研究使用时空生物数学模型作为神经胶质瘤浓度、扩散、对放射治疗的反应以及活体患者中个体神经胶质瘤治疗后复发位置的指标,以在足够的时间内影响临床决策。这涉及到一个粗略但必要的假设,即 T1 加权、钆增强、T2 加权 MRI 和 PET 成像技术等医学成像技术与疾病分布和生物学直接相关。作为疾病进展的主要临床窗口,成像技术被用作衡量模型预测的准确性和成功的基准和指标。方法涉及现代技术和工具,包括临床成像的共同配准、3D辐射剂量分布图以及每个神经胶质瘤的时空生长和扩散的4D患者特异性、模型模拟电影。将模型预测的侵袭和治疗反应模式与后续成像以及最终尸检中观察到的模式进行比较。公共卫生相关性:该提案与公共卫生的相关性在于其适用于患有原发性脑肿瘤(神经胶质瘤)并正在接受治疗或正在接受治疗的任何个体患者(以及任何拟议的“类似”患者组的组成)。正在考虑进行放射治疗。由于疾病进展和对治疗的反应很大程度上是通过当前成像技术的变化来衡量的,因此神经胶质瘤的临床观察仅限于“冰山一角”的观点。除了我们无法通过成像观察到的治疗反应之外,预测和评估神经胶质瘤细胞在整个大脑中的扩散(侵袭)的工具对于开发针对这种致命肿瘤的新的有效疗法至关重要。具体而言,由于放射治疗针对的是影像异常周围分散的胶质瘤细胞,因此有必要超越影像的限制进行计算并设计数学模型来动态评估肿瘤的该组成部分并利用肿瘤的优势实时和真实患者的增殖率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kristin R Swanson其他文献

Biologically-informed deep neural networks provide quantitative assessment of intratumoral heterogeneity in post-treatment glioblastoma
生物信息深度神经网络提供胶质母细胞瘤治疗后瘤内异质性的定量评估
  • DOI:
    10.1101/2022.12.20.521086
  • 发表时间:
    2024-01-23
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hairong Wang;Michael G. Argenziano;H. Yoon;D. Boyett;A. Save;P.D. Petridis;William M Savage;P. Jackson;A. Hawkins;Nhan L Tran;Lel;S. Hu;Osama Al Dalahmah;Jeffrey N. Bruce;J. Grinb;Kristin R Swanson;P. Canoll;Jing Li
  • 通讯作者:
    Jing Li
Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis: A review
用于癌症诊断和预后的知识型机器学习:综述
  • DOI:
    10.48550/arxiv.2401.06406
  • 发表时间:
    2024-01-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingchao Mao;Hairong Wang;Lel;S. Hu;Nhan L Tran;Peter D Canoll;Kristin R Swanson;Jing Li
  • 通讯作者:
    Jing Li
Complementary role of mathematical modeling in preclinical glioblastoma: differentiating poor drug delivery from drug insensitivity
数学模型在临床前胶质母细胞瘤中的补充作用:区分药物输送不良和药物不敏感
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Urcuyo;S. Massey;A. Hawkins;B. Marin;D. Burgenske;J. Sarkaria;Kristin R Swanson
  • 通讯作者:
    Kristin R Swanson
Response to "Tumor cells in search for glutamate: an alternative explanation for increased invasiveness of IDH1 mutant gliomas".
对“肿瘤细胞寻找谷氨酸:IDH1 突变神经胶质瘤侵袭性增加的另一种解释”的回应。
  • DOI:
    10.1093/neuonc/nou290
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    15.9
  • 作者:
    Andrew D. Trister;Jacob Scott;Russell Rockne;Kevin Yagle;S. Johnston;A. Hawkins;A. Baldock;Kristin R Swanson
  • 通讯作者:
    Kristin R Swanson
Uncertainty Quantification in Radiogenomics: EGFR Amplification in Glioblastoma
放射基因组学中的不确定性定量:胶质母细胞瘤中的 EGFR 扩增
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leland S. Hu;Lujia Wang;A. Hawkins;Jenny M. Eschbacher;K. Singleton;P. Jackson;K. Clark;Christopher P. Sereduk;Sen Peng;Panwen Wang;Junwen Wang;L. Baxter;Kris A. Smith;Gina L. Mazza;Ashley M. Stokes;B. Bendok;Richard S. Zimmerman;C. Krishna;Alyx Porter;M. Mrugala;J. Hoxworth;Teresa Wu;Nhan L Tran;Kristin R Swanson;Jing Li
  • 通讯作者:
    Jing Li

Kristin R Swanson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kristin R Swanson', 18)}}的其他基金

MOSAIC: Imaging Human Tissue State Dynamics In Vivo
MOSAIC:体内人体组织状态动态成像
  • 批准号:
    10729423
  • 财政年份:
    2023
  • 资助金额:
    $ 32.95万
  • 项目类别:
MOSAIC: Administrative Core
MOSAIC:行政核心
  • 批准号:
    10729421
  • 财政年份:
    2023
  • 资助金额:
    $ 32.95万
  • 项目类别:
MOSAIC: Biospecimen Core
MOSAIC:生物样本核心
  • 批准号:
    10729425
  • 财政年份:
    2023
  • 资助金额:
    $ 32.95万
  • 项目类别:
Project 1: Modeling the Interface between Non-invasive Imaging and Drug Distribution
项目 1:对无创成像和药物分配之间的接口进行建模
  • 批准号:
    9187652
  • 财政年份:
    2016
  • 资助金额:
    $ 32.95万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    8605773
  • 财政年份:
    2012
  • 资助金额:
    $ 32.95万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    8515534
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    7905757
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    8123111
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    8309373
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
  • 项目类别:
E=mc2: Environment-Driven Mathematical Modeling for Clinical Cancer Imaging
E=mc2:环境驱动的临床癌症成像数学模型
  • 批准号:
    8555189
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
  • 项目类别:

相似海外基金

Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    8515534
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    7905757
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    8123111
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    8309373
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
  • 项目类别:
Experimental Animal Models of TB: Chemotherapeutics and Imaging
结核病实验动物模型:化疗和影像学
  • 批准号:
    10272059
  • 财政年份:
  • 资助金额:
    $ 32.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了