COVID-19 detection through scent analysis with a compact GC device
使用紧凑型 GC 设备通过气味分析检测 COVID-19
基本信息
- 批准号:10266206
- 负责人:
- 金额:$ 99.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-21 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:AgreementAlgorithmsBiological AssayBiological MarkersBiotechnologyBloodBreath TestsCOVID-19COVID-19 detectionCOVID-19 diagnosisCOVID-19 diagnosticCOVID-19 monitoringCOVID-19 pandemicCOVID-19 patientCOVID-19 prognosisCessation of lifeClinicalCodeCritical CareDataData AnalysesData Coordinating CenterData ScienceData ScientistDevicesDiagnosisDimensionsDiseaseEngineeringEnsureGas ChromatographyGeneticHealthHospitalsHumanHuman bodyImmunologicsIn SituInstitutesInstitutional Review BoardsInterventionLicensingMachine LearningMechanical ventilationMedicalMedicineMethodsMichiganMonitorParticipantPatientsPatternPerformancePharmacotherapyProcessProductionRADx RadicalResearchResourcesSARS-CoV-2 infectionSARS-CoV-2 negativeSARS-CoV-2 positiveSalivaSamplingSavingsServicesSeveritiesSpeedTechnologyTestingTimeTrainingUniversitiesValidationVirus DiseasesWorkacute hypoxemic respiratory failureautomated algorithmbasebiomarker identificationcohortcommercializationcommunity settingcomputerized data processingcostdesignfight againstfightingglobal healthimprovedmetabolomicsmultidisciplinarynasopharyngeal swabpandemic diseasepoint of careportabilityrapid detectionrecruitscreeningsevere COVID-19two-dimensional
项目摘要
Recent studies, including ours, have suggested that breath may allow us to diagnose COVID-19 infection
and even monitor its progress. As compared to immunological and genetic based methods using sample media
like blood, nasopharyngeal swab, and saliva, breath analysis is non-invasive, simple, safe, and inexpensive; it
allows a nearly infinite amount of sample volume and can be used at the point-of-care for rapid detection.
Fundamentally, breath also provides critical metabolomics information regarding how human body responds to
virus infection and medical intervention (such as drug treatment and mechanical ventilation). The objectives of
the proposed SCENT project are: (1) to refine automated, portable, high-performance micro-gas
chromatography (GC) device and related data analysis / biomarker identification algorithms for rapid (5-6
minutes), in-situ, and sensitive (down to ppt) breath analysis and (2) to conduct breath analysis on up to 760
patients, and identify and validate the COVID-19 biomarkers in breath. Thus, in coordination with the RADx-rad
Data Coordination Center (DCC), we will complete the following specific aims.
(1) Refine 5 automated micro-GC devices to achieve higher speed and better separation capability. We
will construct 5 new automated and portable one-dimensional micro-GC devices that require only ~6 minutes of
assay time (improved from current 20 minutes) at the ppt level sensitivity (Sub-Aim 1a). Then the devices will be
upgraded to 2-dimensional micro-GC to significantly increase the separation capability (Sub-Aim 1b). In the
meantime, we will optimize and automate our existing data processing and biomarker identification algorithms
and codes to streamline the workflow so that the GC device can automatically process and analyze the data
without human intervention (Sub-Aim 1c).
(2) Identify breath biomarkers that distinguish COVID-19 positive (symptomatic and asymptomatic) and
negative patients. We will recruit a training cohort of 380 participants, including 190 COVID-19 positive patients
(95 symptomatic and 95 asymptomatic) and 190 COVID-19 negative patients from two hospitals (Michigan
Medicine – Ann Arbor and the Henry Ford Hospital – Detroit). We will conduct breath analysis using machine
learning to identify VOC patterns that match each COVID-19 diagnostic status.
(3) Validate the COVID-19 biomarkers using our refined micro-GC devices. Using the refined 2-D micro-GC
devices from Sub-Aim 1b, we will recruit a new validation cohort of 380 participants (190 COVID-19 positive
patients and 190 COVID-19 negative patients) to validate the biomarkers identified in Aim 2.
We will leverage existing engineering, data science, clinical, regulatory, and commercialization resources
throughout the project to hit our milestones, ensuring a high likelihood of rapid patient impact. Upon completion
of this work, we will have a portable micro-GC device and accompanying automated algorithms that can detect
and monitor COVID-19 status for people in a variety of clinical and community settings.
最近的研究,包括我们的研究,表明呼吸可能使我们能够诊断出Covid-19感染
甚至监控其进度。与使用样品介质的免疫学和基于遗传学的方法相比
像血液,鼻咽拭子和唾液一样,呼吸分析是无创,简单,安全且廉价的。
允许几乎无限的样品体积,可在护理点上使用以进行快速检测。
从根本上讲,呼吸还提供了有关人体如何反应的关键代谢组学信息
病毒感染和医疗干预(例如药物治疗和机械通气)。目标的目标
拟议的气味项目是:(1)改进自动化,便携式,高性能的微气体
媒介(GC)设备和相关数据分析 /生物标志物识别算法的快速算法(5-6
分钟),原位和敏感(降至PPT)呼吸分析,以及(2)进行高达760的呼吸分析
患者,并在呼吸中识别和验证Covid-19-19。那是与radx-rad的协调
数据协调中心(DCC),我们将完成以下特定目标。
(1)完善5个自动化的Micro-GC设备,以实现更高的速度和更好的分离能力。我们
将构建5个新的自动化和便携式一维微型GC设备,仅需要约6分钟
在PPT级别灵敏度(SUB-AIM 1A)处的测定时间(从当前20分钟提高)。然后设备将是
升级到二维微型GC,可显着提高分离能力(Sub-aim 1b)。在
同时,我们将优化并自动化现有的数据处理和生物标志物识别算法
和代码以简化工作流程,以便GC设备可以自动处理和分析数据
没有人类干预(Sub-aim 1C)。
(2)确定呼吸生物标志物,以区分covid-19阳性(有症状和无症状)和
阴性患者。我们将招募一个由380名参与者组成的培训队列,包括190名Covid-19-190阳性患者
(95个症状和95个无症状)和190 COVID-190来自两家医院的阴性患者(密歇根州)
医学 - 安阿伯和亨利·福特医院 - 底特律)。我们将使用机器进行呼吸分析
学会识别与每种covid-19诊断状态相匹配的VOC模式。
(3)使用我们精制的Micro-GC设备验证Covid-19-19生物标志物。使用精制的二维微型GC
Sub-aim 1B的设备,我们将招募380名参与者的新验证队列(190 Covid-19-190阳性
患者和190名Covid-190阴性患者)以验证AIM 2中鉴定的生物标志物。
我们将利用现有的工程,数据科学,临床,监管和商业化资源
通过该项目达到我们的里程碑,确保患者迅速影响的可能性很大。完成后
在这项工作中,我们将拥有一种便携式Micro-GC设备和可以检测到的自动化算法
并监视各种临床和社区环境中人们的COVID-19状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xudong Fan其他文献
Xudong Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xudong Fan', 18)}}的其他基金
High performance wearable body odor sensor arrays for disease detection and monitoring
用于疾病检测和监测的高性能可穿戴体味传感器阵列
- 批准号:
10674716 - 财政年份:2022
- 资助金额:
$ 99.98万 - 项目类别:
High performance wearable body odor sensor arrays for disease detection and monitoring
用于疾病检测和监测的高性能可穿戴体味传感器阵列
- 批准号:
10425780 - 财政年份:2022
- 资助金额:
$ 99.98万 - 项目类别:
COVID-19 detection through scent analysis with a compact GC device
使用紧凑型 GC 设备通过气味分析检测 COVID-19
- 批准号:
10321006 - 财政年份:2020
- 资助金额:
$ 99.98万 - 项目类别:
Novel gas chromatography for rapid, in situ workplace hazardous VOC/VIC analysis
用于快速现场工作场所危险 VOC/VIC 分析的新型气相色谱法
- 批准号:
10171393 - 财政年份:2018
- 资助金额:
$ 99.98万 - 项目类别:
Protein interaction study In-vitro and in live cells with optofluidic lasers
使用光流控激光器进行体外和活细胞中的蛋白质相互作用研究
- 批准号:
8634300 - 财政年份:2014
- 资助金额:
$ 99.98万 - 项目类别:
Microfluidics in Biomedical Sciences Training Program
生物医学科学中的微流控培训计划
- 批准号:
9769723 - 财政年份:2005
- 资助金额:
$ 99.98万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 99.98万 - 项目类别:
A prospective clinical trial of immunosuppression reduction in recipients of low eplet mismatched renal allografts: the kidney for life initiative
低 eplet 错配肾同种异体移植受者减少免疫抑制的前瞻性临床试验:肾脏生命倡议
- 批准号:
10704807 - 财政年份:2023
- 资助金额:
$ 99.98万 - 项目类别:
Prediction of nearest neighbor parameters for folding RNAs with modified nucleotides
预测具有修饰核苷酸的折叠 RNA 的最近邻参数
- 批准号:
10576175 - 财政年份:2023
- 资助金额:
$ 99.98万 - 项目类别:
Oral Dysplasia and Oral Cavity Cancer Risk in Dental and Medical Surveillance Settings Using a Chairside Chip-Based Cytopathology Tool
使用基于椅旁芯片的细胞病理学工具评估牙科和医疗监测环境中的口腔发育不良和口腔癌风险
- 批准号:
10344966 - 财政年份:2022
- 资助金额:
$ 99.98万 - 项目类别: