Ultrasound Evaluation of Liver Steatosis
肝脏脂肪变性的超声评估
基本信息
- 批准号:10264795
- 负责人:
- 金额:$ 23.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-16 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AgreementAlgorithmsAmericanBenchmarkingBiological MarkersCalibrationCardiovascular DiseasesCardiovascular systemClassificationClinicalDetectionDiabetes MellitusDiagnosisEvaluationFatty LiverFatty acid glycerol estersFrequenciesGuidelinesImageIndividualInterventionLateralLeadLiverLiver CirrhosisLiver FibrosisLiver diseasesLogistic RegressionsMagnetic Resonance ImagingMeasurementMeasuresMethodsNoiseOutcomePatientsPenetrationPopulationProtonsROC CurveReproducibilityRiskScanningSeriesSerumSignal TransductionStagingTechnologyTestingTimeTransducersUltrasonographyUnited StatesX-Ray Computed Tomographyattenuationclinical practiceclinical translationcostcost effectivedensitydiabetes managementimprovedimproved outcomeliver biopsyliver imagingnew technologynonalcoholic steatohepatitisnovelpatient populationscreeningscreening guidelines
项目摘要
PROJECT SUMMARY
About 75-100 million Americans are estimated to have fatty liver disease, which can lead to nonalcoholic
steatohepatitis (NASH) and liver fibrosis. Detection of liver steatosis is important for diagnosis of NASH at early
stage for timely intervention to improve outcome. Diagnosis of hepatic steatosis is also important for
management of diabetes and cardiovascular disease. Serum biomarkers, computed tomography, and B-mode
ultrasound have limited sensitivity for detecting steatosis. Proton Density Fat Fraction (PDFF) measured by
MRI has high accuracy, but is limited by accessibility and cost. The value of ultrasound attenuation coefficient
(UAC) for steatosis evaluation has been confirmed by many studies. Therefore, technologies that are
compatible with clinical ultrasound scanners to measure UAC can meet this critical need by providing a low-
cost, widely accessible, and accurate staging of steatosis.
Here we propose a novel technology, Spectrum Normalization Attenuation Measurement (SNAM), to measure
liver UAC. SNAM does not require a calibration phantom, and instead uses the ratio of spectra at two nearby
frequencies to cancel the effects of focusing and depth-dependent gain for accurate measurement of UAC.
SNAM is compatible with clinical ultrasound scanners and can provide 2D UAC images. In phantom studies,
SNAM measurements using focused beams or plane waves matched well with calibrated values. SNAM
results obtained in 10 patients had a correlation coefficient of 0.97 with PDFF, showing its high promise.
Specific Aim 1: Optimization of SNAM. We will use phantom and patient studies to optimize SNAM on the
GE Logiq E9 and the Verasonics scanners, which represent the wide spectrum of commercial scanners (with
focused beam or plane wave imaging) used in clinical practice. Acquisition parameters of fundamental and
harmonic imaging modes and post-processing algorithms will be optimized. A novel noise subtraction method
will be studied to suppress noise and improve SNAM penetration. Signal-to-noise ratio will be calculated to
guide automatic selection of frequency range used for SNAM measurements.
Specific Aim 2: Patient study. We will use the SNAM optimized in Aim 1 to study 50 patients with clinically
indicated PDFF-MRI to investigate the efficacy of SNAM for steatosis grading. Each patient will be scanned
twice by two sonographers. The intraclass correlation coefficient will be used to assess the reproducibility of
SNAM measurements. Correlation analysis will be performed to assess the association of the UAC obtained
via SNAM with PDFF. Steatosis will also be categorized as S0, S1, S2, and S3 according to PDFF. Receiver
operating characteristic analyses will be performed to establish SNAM cut-points which detect ≥S1, ≥S2, and
≥S3. The agreement between SNAM and PDFF classification will be evaluated using the Kappa statistic.
Successful completion of this project will result in a safe, cost-effective, and easily accessible ultrasound
technology for frequent and accurate evaluation of liver steatosis.
项目摘要
据估计,约有75-1亿美国人患有脂肪肝病,这可能导致非酒精性
脂肪性肝炎(NASH)和肝纤维化。检测肝脂肪变性对于早期诊断NASH很重要
及时干预以改善结果的阶段。诊断肝脂肪变性对于
糖尿病和心血管疾病的管理。血清生物标志物,计算机断层扫描和B模式
超声对检测脂肪变性的灵敏度有限。质子密度分数(PDFF)
MRI的精度很高,但受到可访问性和成本的限制。超声衰减系数的价值
(UAC)用于脂肪变性评估已通过许多研究证实。因此,
与临床超声扫描仪兼容以测量UAC可以通过提供低 -
成本,广泛获取和准确的脂肪变性分期。
在这里,我们提出了一种新技术,频谱归一化衰减测量(SNAM),以测量
肝UAC。 SNAM不需要校准幻影,而是在附近两个光谱的比率
取消聚焦和深度依赖性增益的效果以准确测量UAC的频率。
SNAM与临床超声扫描仪兼容,可以提供2D UAC图像。在幻影研究中,
使用聚焦梁或平面波与校准值很好地匹配的SNAM测量。 Snam
在10例患者中获得的结果与PDF的相关系数为0.97,显示出很高的希望。
特定目的1:优化SNAM。我们将使用幻影和患者研究来优化在
GE Logiq E9和Verasonics扫描仪,代表广泛的商业扫描仪(带有
用于临床实践的聚焦梁或平面波成像)。基本和
将优化谐波成像模式和后处理算法。一种新型的噪声减法方法
将研究以抑制噪声并改善SNAM穿透。信噪比将计算为
指导自动选择用于ne缝测量的频率范围。
特定目标2:患者研究。我们将使用AIM 1中优化的SNAM来研究50例临床上的患者
指示PDF-MRI研究了SNAM对脂肪变性分级的效率。每个患者将被扫描
两次由两个超声检查。类内相关系数将用于评估
SNAM测量。将进行相关分析以评估获得的UAC的关联
通过pdff通过Snam。根据PDFF,脂肪变性还将归类为S0,S1,S2和S3。接收者
将进行操作特征分析,以建立检测≥s1,≥S2和
≥S3。 SNAM和PDF分类之间的协议将使用KAPPA统计数据进行评估。
该项目的成功完成将导致安全,经济高效且易于访问的超声波
经常,准确评估肝脏脂肪变性的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shigao Chen其他文献
Shigao Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shigao Chen', 18)}}的其他基金
High-Resolution Flow Imaging of Optic Nerve Head and Retrolaminar Microvascular Circulation
视神经乳头和层后微血管循环的高分辨率血流成像
- 批准号:
10649225 - 财政年份:2023
- 资助金额:
$ 23.85万 - 项目类别:
Renal Microvessel Imaging for Characterization of Chronic Kidney Disease
肾脏微血管成像用于表征慢性肾脏病
- 批准号:
10581889 - 财政年份:2023
- 资助金额:
$ 23.85万 - 项目类别:
Ultrasensitive Doppler Ultrasound for Evaluation of Rheumatoid Arthritis
超灵敏多普勒超声评估类风湿关节炎
- 批准号:
10523605 - 财政年份:2022
- 资助金额:
$ 23.85万 - 项目类别:
Ultrasensitive Doppler Ultrasound for Evaluation of Rheumatoid Arthritis
超灵敏多普勒超声评估类风湿关节炎
- 批准号:
10659056 - 财政年份:2022
- 资助金额:
$ 23.85万 - 项目类别:
3D Ultra-sensitive Ultrasound Microvessel Imaging for Breast Mass Differentiation
3D 超灵敏超声微血管成像用于乳腺肿块分化
- 批准号:
10442667 - 财政年份:2021
- 资助金额:
$ 23.85万 - 项目类别:
Shear Wave Elastography of Myofascial Trigger Points Using a Compact Scanner
使用紧凑型扫描仪进行肌筋膜触发点的剪切波弹性成像
- 批准号:
9236961 - 财政年份:2017
- 资助金额:
$ 23.85万 - 项目类别:
Ultrasound Elastography for Liver Fibrosis Staging
超声弹性成像用于肝纤维化分期
- 批准号:
9288188 - 财政年份:2015
- 资助金额:
$ 23.85万 - 项目类别:
Virtual Biopsy with Ultrasound for Liver Fibrosis Staging
超声虚拟活检用于肝纤维化分期
- 批准号:
7726313 - 财政年份:2009
- 资助金额:
$ 23.85万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Clustered home assessment of visual fields in patients with glaucoma
青光眼患者视野的集群家庭评估
- 批准号:
10698909 - 财政年份:2023
- 资助金额:
$ 23.85万 - 项目类别:
Quantitative characterization of the liver-pancreas axis in diabetes via multiparametric magnetic resonance elastography
通过多参数磁共振弹性成像定量表征糖尿病肝胰轴
- 批准号:
10718333 - 财政年份:2023
- 资助金额:
$ 23.85万 - 项目类别:
Intensive Speech Motor Chaining Treatment and Artificial Intelligence Integration for Residual Speech Sound Disorders
残余言语障碍的强化言语运动链治疗和人工智能整合
- 批准号:
10635488 - 财政年份:2023
- 资助金额:
$ 23.85万 - 项目类别: