Artificial Intelligence from Chest CT to Assess COVID-19 Clinical Trials

利用胸部 CT 的人工智能评估 COVID-19 临床试验

基本信息

  • 批准号:
    10262657
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

In the short time during the pandemic, NIH, partners, and extended teams have deployed public multinational CT dataset via TCIA (650 CT's to date), with data sharing and international partnerships. NIH partners have had 3rd parties deploy a website with drag-and-drop functionality for CT scans. Computer industry partner has jointly developed algorithms and toolkits for deep learning for no-cost "freeware" public pipeline for COVID AI classification. Deployment of a pipeline to promote deep learning without he privacy risk or restrictions has been demonstrated for academic and research use with shared models, via federated learning via a public/private partnerships. This allows sharing of AI model weights, without the actual data itself moving around from its private controlled source. NIH team has validated pre-commercial beta software for COVID-19 specific analysis and quantification, from an imaging industry partner. Correlation of immune and inflammatory molecular dynamics with CT AI imaging profiles was validated in clinical trials during the past few months in FY 2020. Development is underway for standardized tools for uniform quantification of COVID-19 disease via CT characterization of metrics: 1. % COVID-19 involvement, 2. % ground glass opacities, 3. % consolidation components. These metrics are postulated to be correlates of response. In parallel, NIH teams helped develop and validate public and private commercial software tools from large central annotated source data. There is a critical need for standardized tools for measurement and correlation with clinical outcomes, such as monoclonal antibody or anti-viral therapy responses. Non-deep learning tools may measure simple density statistics, which is likely to be less specific. Although machine learning or radiomics-based CT feature assessment might perform a similar function, the reliance upon specific imaging features may result in fewer data points and a less standardized and reproducible tools. Deep learning and AI tools with the methodology proposed should provide more reproducible and standardized models, which have better chances for being generalized to a very broad and heterogeneous community setting, with inherent variabilities in prevalence and patient populations, and dynamically evolving population dynamics. The CT AI classification model developed detects COVID-19 and differentiates COVID-10 from influenza and other non-COVID-19 diagnoses (Nature Communications 2020). This detection and differentiation/classification model might be useful during the fall Northern hemisphere influenza season. In addition, the model may be useful at point of care and emergency settings in order to rapidly identify and isolate typical infiltrates of COVID-19. In one method of use, there would be point of care alarming for subsequent rapid radiologist review before an asymptomatic patient were allowed to leave the CT suite. Temporal dynamics of pre-symptomatic CT AI opacities correlated with COVID-19 pre-symptomatic viral dynamics. Asymptomatic CT scans were quantified with CT AI tools. Serial / sequential CT scans in patients with early disease (dating average of > 40 days and 4 scans per patient) were statistically displayed in generalized curves and correlated with serum labs such as CRP, pro-calcitonin, LDH, WBC, etc). These generalized curves in mild and early disease have been shown to provide a reference, enabling prediction of deviation from this curve as a risk factor for poor outcome or higher level interventions. Models have also been developed for automated and standardized quantification of lung disease based on CT AI. Retrospective validation of 1000 CT scans with a commercial pre-release beta software has been accomplished, with interobserver performance assessed. Partnerships with the Trans-NIH working group has been forged, including NIAID IRF, NIBIB MIDCR, NCI, NCATS, NIDDK, N3C, RSNA, RICORD, ACR, AAPM, and MITA. Centralized communication and discovery pathways for COVID-19-related data science that involves medical imaging like CT is a common theme and goal.
在大流行期间的短时间内,NIH,合作伙伴和扩展团队通过TCIA(迄今为止650 CT)部署了公共跨国公司CT数据集,并具有数据共享和国际合作伙伴关系。 NIH Partners已有第三方部署了一个网站,该网站具有CT扫描的拖放功能。计算机行业合作伙伴已共同开发了用于深度学习的算法和工具包,用于无成本的“免费软件”公共管道进行COVID AI分类。通过公共/私人合作伙伴关系,通过联邦学习,已经证明了在没有HE隐私风险或限制的情况下促进深度学习或限制的管道的部署。这允许共享AI模型权重,而没有从其私有控制源移动的实际数据本身。 NIH团队已从成像行业合作伙伴中验证了商业前的Beta软件,用于COVID-19的特定分析和量化。 Correlation of immune and inflammatory molecular dynamics with CT AI imaging profiles was validated in clinical trials during the past few months in FY 2020. Development is underway for standardized tools for uniform quantification of COVID-19 disease via CT characterization of metrics: 1. % COVID-19 involvement, 2. % ground glass opacities, 3. % consolidation components.这些指标被认为是响应的相关性。同时,NIH团队从大型中央注释源数据中帮助开发和验证了公共和私人商业软件工具。 标准化工具非常需要测量和与临床结果(例如单克隆抗体或抗病毒疗法反应)相关。非深度学习工具可以测量简单的密度统计数据,这可能不太具体。尽管基于机器学习或基于放射线学的CT功能评估可能会执行相似的功能,但对特定成像功能的依赖可能会导致数据点较少,并且具有较低的标准化和可重现的工具。深度学习和AI工具具有所提出的方法,应提供更可重复的和标准化的模型,这些模型有更好的机会被推广到非常广泛和异类的社区环境,并具有固有的变异性和患者人群的固有变化,并动态发展了人口动态。 CT AI分类模型开发了COVID-19,并将Covid-10与流感和其他非旋转19诊断区分开(自然通信2020)。在秋季北半球流感季节,这种检测和分化/分类模型可能很有用。此外,该模型在护理点和紧急情况下可能很有用,以便快速识别和隔离Covid-19的典型浸润。在一种使用方法中,在允许无症状患者离开CT套件之前,将有一个护理点令人震惊。 症状前CT AI的时间动力学与COVID-19的症状前病毒动力学相关。用CT AI工具对无症状CT扫描进行定量。早期疾病患者的串行 /顺序CT扫描(平均约40天和4例患者的扫描)在统计上以广义曲线显示,并与血清实验室(例如CRP,pro-Calcitonin,LDH,WBC等)相关)。这些在温和疾病和早期疾病中的普遍曲线已被证明提供了参考,从而可以预测与此曲线的偏差为不良结果或更高水平干预措施的危险因素。还开发了基于CT AI的肺疾病的自动化和标准化的量化模型。 通过商业释放前Beta软件进行了1​​000 CT扫描的回顾性验证,并评估了观察者的性能。与Trans-NIH工作组建立了与Trans-NIH工作组建立的合作伙伴关系,包括Niaid IRF,Nibib Midcr,NCI,NCAT,NCATS,NIDDK,N3C,RSNA,RICORD,RICORD,ACR,ACR,AAPM,AAPM和MITA。与CT这样的医学成像涉及COVID-19相关数据科学的集中沟通和发现途径是一个共同的主题和目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bradford Wood其他文献

Bradford Wood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bradford Wood', 18)}}的其他基金

Core Research Services for Molecular Imaging and Imaging Sciences
分子成像和成像科学的核心研究服务
  • 批准号:
    7733649
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    10022065
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation Tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    10691768
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    10262633
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Bench to Bedside: Non-invasive Treatment of Tumors in Children
从实验室到临床:儿童肿瘤的无创治疗
  • 批准号:
    10262659
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Image Guided Focused Ultrasound For Drug Delivery and Tissue Ablation
用于药物输送和组织消融的图像引导聚焦超声
  • 批准号:
    10920175
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    8952855
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    10691770
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Optical and electromagnetic tracking guidance for hepatic interventions
肝脏干预的光学和电磁跟踪指导
  • 批准号:
    10691780
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    10920176
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

人源化小鼠筛选猴痘抗体及机制研究
  • 批准号:
    82373778
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
抗HTNV抗体mRNA修饰MSC在肾综合征出血热治疗中的作用研究
  • 批准号:
    82302487
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人和小鼠中新冠病毒RBD的免疫原性表位及其互作抗体的表征和结构组学规律的比较研究
  • 批准号:
    32371262
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
靶向肿瘤内T细胞的双特异性抗体治疗策略研究
  • 批准号:
    82371845
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
靶向DLL3和γδ T细胞的双特异抗体对小细胞肺癌的免疫治疗活性研究
  • 批准号:
    32300783
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Predicting HIV-1 escape from therapeutics in vitro and in vivo - toward personalizing medicine for people living with HIV
预测 HIV-1 从体外和体内治疗中逃逸 - 为 HIV 感染者提供个性化医疗
  • 批准号:
    10619924
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Rapid point-of-care molecular test for HCV VL
HCV VL 快速护理点分子检测
  • 批准号:
    10330833
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Integrating HCV services into HIV programs for PWID in India
将 HCV 服务纳入印度针对注射吸毒者的艾滋病毒项目
  • 批准号:
    10651729
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Integrating HCV services into HIV programs for PWID in India
将 HCV 服务纳入印度针对注射吸毒者的艾滋病毒项目
  • 批准号:
    10210233
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Integrating HCV services into HIV programs for PWID in India
将 HCV 服务纳入印度针对注射吸毒者的艾滋病毒项目
  • 批准号:
    10433886
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了