Image Analysis Tools for mpMRI Prostate Cancer Diagnosis Using PI-RADS
使用 PI-RADS 进行 mpMRI 前列腺癌诊断的图像分析工具
基本信息
- 批准号:10256757
- 负责人:
- 金额:$ 80.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary
Prostate cancer is one of the most commonly occurring forms of cancer, accounting for 21% of all cancer in men.
The Prostate Imaging Reporting and Data System (PI-RADS) aims to standardize reporting of prostate cancer
using multi-parametric magnetic resonance imaging (mpMRI). However, the in-depth analysis, as demanded
by PI-RADS, remains challenging due to the complexity and heterogeneity of the disease, and it is a clinically
burdensome task subject to both significant intra- and inter-reader variability. Auxiliary tools based on machine
learning methods such as deep learning can reduce diagnostic variability and increase workload efficiency by
automatically performing tasks and presenting results to a radiologist for the purpose of decision support. In
particular, automated identification and classification of lesion candidates using imaging data can be performed
with respect to PI-RADS scoring. In Phase I of this project, we developed two automated methods to reduce the
intra- and inter-observer variability while interpreting mpMRI images using the PI-RADS protocol: (i) a method
to co-register mpMRI data, and (ii) a method to geometrically segment the prostate gland into the PI-RADS
protocol sector map. The overarching goal of this Phase II project is to develop machine learning algorithms that
incorporate both co-registered multi-modal imaging biomarkers and PI-RADS sector map information into an
automated clinical diagnostic aid. The innovation in this project lies in the use of deep learning to automatically
predict PI-RADS classification. This project is significant in that it has the potential to improve clinical efficiency
and reduce diagnostic variation in prostate cancer diagnosis. In Aim 1 of this project, we will develop a deep
learning approach to localize and classify lesions in mpMRI. In Aim 2, we will integrate this diagnostic tool into the
ProFuseCAD system and perform rigorous multi-site validation to quantify PI-RADS classification performance.
Both aims will utilize a database of over 1,000 existing mpMRI images from multiple clinical sites to develop and
validate the algorithms. Ultimately, enhancements from this project will create a novel feature for Eigen's (the
applicant company's) FDA 510(k)-cleared imaging product, ProFuseCAD, in order to improve the diagnosis and
reporting of prostate cancer.
项目摘要
前列腺癌是最常见的癌症形式之一,占男性所有癌症的21%。
前列腺成像报告和数据系统(PI-RADS)旨在标准化前列腺癌的报告
使用多参数磁共振成像(MPMRI)。但是,按要求的深入分析
由于疾病的复杂性和异质性,pi-rads仍然受到挑战,这是临床上的
负担重大的任务均受到显着的内部和读取器变异性的约束。基于机器的辅助工具
诸如深度学习之类的学习方法可以减少诊断可变性,并通过
自动执行任务并将结果呈现给无线电主义者,以实现决策支持的目的。在
可以使用成像数据对病变候选物进行特殊的自动识别和分类
关于Pi-Rads得分。在该项目的第一阶段,我们开发了两种自动化方法来减少
使用PI-RADS协议解释MPMRI图像时观察者内和观察者的可变性:(i)一种方法
共同注册mPMRI数据,(ii)几何将前列腺分割到Pi-Rads中的方法
协议扇区图。该第二阶段项目的总体目标是开发机器学习算法
将共同注册的多模式成像生物标志物和Pi-Rads扇区映射信息纳入一个
自动临床诊断辅助工具。该项目的创新在于使用深度学习自动
预测Pi-Rads分类。该项目显着,因为它有可能提高临床效率
并减少前列腺癌诊断的诊断变化。在该项目的目标1中,我们将发展一个深刻的
在mpMRI中局部和分类病变的学习方法。在AIM 2中,我们将将此诊断工具集成到
PROFUSECAD系统并执行严格的多站点验证,以量化Pi-Rads分类性能。
这两个目标都将利用来自多个临床站点的1,000多个现有MPMRI图像的数据库来开发和
验证算法。最终,该项目的增强功能将为eigen创造一个新颖的功能(
申请人公司)FDA 510(k)切实成像产品,ProfusEcad,以改善诊断和
报道前列腺癌。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
John Aaron Onofrey的其他基金
Data-driven Head Motion Correction in PET Imaging Using Deep Learning
使用深度学习在 PET 成像中进行数据驱动的头部运动校正
- 批准号:1037685510376855
- 财政年份:2020
- 资助金额:$ 80.31万$ 80.31万
- 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Neural mechanisms regulating glucose homeostasis
调节葡萄糖稳态的神经机制
- 批准号:1063424910634249
- 财政年份:2023
- 资助金额:$ 80.31万$ 80.31万
- 项目类别:
1/2 – Pediatric Prehospital Airway Resuscitation Trial
1/2 — 儿科院前气道复苏试验
- 批准号:1073858110738581
- 财政年份:2023
- 资助金额:$ 80.31万$ 80.31万
- 项目类别:
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
- 批准号:1073730810737308
- 财政年份:2023
- 资助金额:$ 80.31万$ 80.31万
- 项目类别:
Continuous Glucose Monitoring in Dialysis Patients to Overcome Dysglycemia Trial (CONDOR TRIAL)
透析患者连续血糖监测克服血糖异常试验(CONDOR TRIAL)
- 批准号:1058747010587470
- 财政年份:2023
- 资助金额:$ 80.31万$ 80.31万
- 项目类别:
A Randomized Clinical Trial of the Safety and FeasibiLity of Metformin as a Treatment for sepsis induced AKI (LiMiT AKI)
二甲双胍治疗脓毒症引起的 AKI (LiMiT AKI) 的安全性和可行性的随机临床试验
- 批准号:1065682910656829
- 财政年份:2023
- 资助金额:$ 80.31万$ 80.31万
- 项目类别: