3D printing functional graphenic materials (FGMs) as intrinsically inductive scaffolds for bone regeneration
3D 打印功能石墨烯材料 (FGM) 作为骨再生的本征感应支架
基本信息
- 批准号:10259656
- 负责人:
- 金额:$ 19.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-09 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAddressAffectAlkaline PhosphataseAreaAutologousBiocompatible MaterialsBiologicalBiomimeticsBone InjuryBone RegenerationCalvariaCellsCephalicChemicalsChemistryClinicalCouplesCrosslinkerCustomDefectDeformityDegradation PathwayDevelopmentDimensionsEffectivenessEnvironmentEvaluationExcisionFundingFutureGenerationsGraft RejectionHumanHydroxyapatitesImmuneImplantIn VitroInfectionInfiltrationInstructionIonsIrrigationMechanicsMesenchymal Stem CellsMethodsModelingMonitorMorbidity - disease rateMusNatural graphiteNatureOperative Surgical ProceduresOrthopedicsOsteogenesisOxidesOxygenPainPathway interactionsPatientsPolymersPolyphosphatesPositioning AttributePowder dose formPredispositionPrintingProceduresPropertyProsthesisProsthesis ImplantationReactionRegenerative responseResidual stateReverse Transcriptase Polymerase Chain ReactionSafetySiteSurfaceSurgeonSuspensionsTechniquesTechnologyTestingTherapeuticTissue DonorsTissue TransplantationTissuesTitaniumTransplantationTraumatic injuryUnited StatesVertebral columnWateragedaqueousautomobile accidentbattlefield injurybonebone qualitycalcium phosphatechemokinecontrolled releasecytokinegraphenehealinghistological stainsimplant materialimprovedin vivoin vivo evaluationinorganic phosphateintraperitoneallaurencinmacrophagemechanical propertiesmeltingmonocytemouse modelnovelosteogenicreplacement tissuescaffoldstem cell differentiationtraumatic eventtumoruptake
项目摘要
Abstract
Severe bone injury can occur due to traumatic events such as automobile accidents or battlefield injuries, and
every year millions of patients in the United States undergo procedures, often invasive and painful, every year
to correct these deformities. Currently, autologous tissue transplantation or implantation of prosthetic devices is
used as a therapeutic treatment for large defect areas. These procedures are limited by a lack of donor tissue,
donor site morbidity, potential for graft rejection, susceptibility to infection, and feasibility of transplantation. Non-
resorbable materials, such as titanium, remain as a permanent implant material and lack the ability to remodeled
for integration with native tissue. We propose a new class of 3D printed graphenic scaffold to mimic the
complexity of bone and induce the native regenerative response.
Functional graphenic materials (FGMs) are a novel class of potential scaffold material that offer tunable
mechanical properties, degradability, and surface chemistry, which together can be used to control bioactivity.
The Sydlik group has developed several novel FGMs that inherently induce osteogenesis in vitro and in vivo.
Specifically, we have shown that calcium phosphate graphene (CaPG) releases bioinstructive counter ions, Ca2+
and PO43- , to spontaneously induces osteogenesis in vivo in a mouse model (PNAS, 2019). However, the
application of FGMs as biomaterials is restricted due to insufficient control of the chemical interface and limited
processing methods. Thus, to make this technology translatable, we need a fabrication technique that can create
volumetric constructs to fill large bone defects. 3D printing is uniquely positioned to address this challenge
because scaffolds can be custom printed to match the patients defect site. This proposal seeks to advance
bioactive osteogenic CaPG into instructive scaffolds that achieve significantly improved cranial bone
regeneration.
抽象的
严重的骨损伤可能是由于车祸或战场受伤等创伤事件造成的,并且
美国每年有数百万患者接受手术,这些手术通常是侵入性且痛苦的
来矫正这些畸形。目前,自体组织移植或假体装置植入已被广泛应用。
用作大缺损区域的治疗方法。这些程序因缺乏供体组织而受到限制,
供体部位发病率、移植物排斥的可能性、感染的易感性以及移植的可行性。非-
可吸收材料,例如钛,仍然作为永久植入材料并且缺乏重塑能力
用于与天然组织整合。我们提出了一种新型 3D 打印石墨烯支架来模仿
骨的复杂性并诱导天然的再生反应。
功能石墨烯材料(FGM)是一类新型的潜在支架材料,具有可调性
机械性能、可降解性和表面化学,它们一起可用于控制生物活性。
Sydlik 小组开发了几种新型 FGM,它们本身可以在体外和体内诱导成骨。
具体来说,我们已经证明磷酸钙石墨烯 (CaPG) 释放生物指示性抗衡离子 Ca2+
和 PO43- ,在小鼠模型中自发诱导体内成骨(PNAS,2019)。然而,
FGM作为生物材料的应用由于化学界面控制不足和限制而受到限制
加工方法。因此,为了使这项技术可转化,我们需要一种能够创造
体积结构可填充大骨缺损。 3D 打印在应对这一挑战方面具有独特的优势
因为支架可以定制打印以匹配患者的缺损部位。该提案旨在推进
将生物活性成骨 CaPG 放入指导性支架中,可显着改善颅骨
再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefanie Arlene Sydlik其他文献
Stefanie Arlene Sydlik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefanie Arlene Sydlik', 18)}}的其他基金
An injectable block copolymer synthetic cartilage
可注射嵌段共聚物合成软骨
- 批准号:
8784250 - 财政年份:2014
- 资助金额:
$ 19.17万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 19.17万 - 项目类别:
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 19.17万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 19.17万 - 项目类别:
Determining reliability and efficacy of intraoperative sensors to reduce structural damage during cochlear implantation
确定术中传感器的可靠性和有效性,以减少人工耳蜗植入期间的结构损伤
- 批准号:
10760827 - 财政年份:2023
- 资助金额:
$ 19.17万 - 项目类别:
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
- 批准号:
10629531 - 财政年份:2023
- 资助金额:
$ 19.17万 - 项目类别: